160 research outputs found

    Interaction between the Triglyceride Lipase ATGL and the Arf1 Activator GBF1

    Get PDF
    The Arf1 exchange factor GBF1 (Golgi Brefeldin A resistance factor 1) and its effector COPI are required for delivery of ATGL (adipose triglyceride lipase) to lipid droplets (LDs). Using yeast two hybrid, co-immunoprecipitation in mammalian cells and direct protein binding approaches, we report here that GBF1 and ATGL interact directly and in cells, through multiple contact sites on each protein. The C-terminal region of ATGL interacts with N-terminal domains of GBF1, including the catalytic Sec7 domain, but not with full-length GBF1 or its entire N-terminus. The N-terminal lipase domain of ATGL (called the patatin domain) interacts with two C-terminal domains of GBF1, HDS (Homology downstream of Sec7) 1 and HDS2. These two domains of GBF1 localize to lipid droplets when expressed alone in cells, but not to the Golgi, unlike the full-length GBF1 protein, which localizes to both. We suggest that interaction of GBF1 with ATGL may be involved in the membrane trafficking pathway mediated by GBF1, Arf1 and COPI that contributes to the localization of ATGL to lipid droplets

    The role of heparan sulfate maturation in cancer: A focus on the 3O-sulfation and the enigmatic 3O-sulfotransferases (HS3STs)

    Get PDF
    Heparansulfate (HS) modifications are master regulators of the cross-talk between cell and matrix and modulate the biological activity of an array of HS binding proteins, including growth factors and chemokines, morphogens and immunity cell receptors. This review will highlight the importance of HS maturation mediated by N-deactetylase/sulfotransferases, 2O- and 6O-sulfotransferases in cancer biology, and will focus on the 3O-sulfotransferases and on the terminal, rare 3O-sulfation, and their important but still enigmatic impact in cancer progression. The review will also discuss the molecular mechanisms of action of these HS modifications with regards to ligand interactions and signaling in the cancer process and their clinical significance

    DNA hypomethylation during MSC chondrogenesis occurs predominantly at enhancer regions

    Get PDF
    Regulation of transcription occurs in a cell type specific manner orchestrated by epigenetic mechanisms including DNA methylation. Methylation changes may also play a key role in lineage specification during stem cell differentiation. To further our understanding of epigenetic regulation in chondrocytes we characterised the DNA methylation changes during chondrogenesis of mesenchymal stem cells (MSCs) by Infinium 450 K methylation array. Significant DNA hypomethylation was identified during chondrogenic differentiation including changes at many key cartilage gene loci. Integration with chondrogenesis gene expression data revealed an enrichment of significant CpGs in upregulated genes, while characterisation of significant CpG loci indicated their predominant localisation to enhancer regions. Comparison with methylation profiles of other tissues, including healthy and diseased adult cartilage, identified chondrocyte-specific regions of hypomethylation and the overlap with differentially methylated CpGs in osteoarthritis. Taken together we have associated DNA methylation levels with the chondrocyte phenotype. The consequences of which has potential to improve cartilage generation for tissue engineering purposes and also to provide context for observed methylation changes in cartilage diseases such as osteoarthritis

    Deficiency in Perlecan/HSPG2 During Bone Development Enhances Osteogenesis and Decreases Quality of Adult Bone in Mice

    Get PDF
    Perlecan/HSPG2 (Pln) is a large heparan sulfate proteoglycan abundant in the extracellular matrix of cartilage and the lacunocanalicular space of adult bones. Although Pln function during cartilage development is critical, evidenced by deficiency disorders including Schwartz–Jampel Syndrome and dyssegmental dysplasia Silverman-Handmaker type, little is known about its function in development of bone shape and quality. The purpose of this study was to understand the contribution of Pln to bone geometric and mechanical properties. We used hypomorph mutant mice that secrete negligible amount of Pln into skeletal tissues and analyzed their adult bone properties using micro-computed tomography and three-point-bending tests. Bone shortening and widening in Pln mutants was observed and could be attributed to loss of growth plate organization and accelerated osteogenesis that was reflected by elevated cortical thickness at older ages. This effect was more pronounced in Pln mutant females, indicating a sex-specific effect of Pln deficiency on bone geometry. Additionally, mutant females, and to a lesser extent mutant males, increased their elastic modulus and bone mineral densities to counteract changes in bone shape, but at the expense of increased brittleness. In summary, Pln deficiency alters cartilage matrix patterning and, as we now show, coordinately influences bone formation and calcification

    Adding marrow adiposity and cortical porosity to femoral neck areal bone mineral density improves the discrimination of women with nonvertebral fractures from controls

    Get PDF
    Advancing age is accompanied by a reduction in bone formation and remodeling imbalance, which produces microstructural deterioration. This may be partly caused by a diversion of mesenchymal cells towards adipocytes rather than osteoblast lineage cells. We hypothesized that microstructural deterioration would be associated with an increased marrow adiposity, and each of these traits would be independently associated with nonvertebral fractures and improve discrimination of women with fractures from controls over that achieved by femoral neck (FN) areal bone mineral density (aBMD) alone. The marrow adiposity and bone microstructure were quantified from HR‐pQCT images of the distal tibia and distal radius in 77 women aged 40 to 70 years with a recent nonvertebral fracture and 226 controls in Melbourne, Australia. Marrow fat measurement from HR‐pQCT images was validated using direct histologic measurement as the gold standard, at the distal radius of 15 sheep, with an agreement (R2 = 0.86, p < 0.0001). Each SD higher distal tibia marrow adiposity was associated with 0.33 SD higher cortical porosity, and 0.60 SD fewer, 0.24 SD thinner, and 0.72 SD more‐separated trabeculae (all p < 0.05). Adjusted for age and FN aBMD, odds ratios (ORs) (95% CI) for fracture per SD higher marrow adiposity and cortical porosity were OR, 3.39 (95% CI, 2.14 to 5.38) and OR, 1.79 (95% CI, 1.14 to 2.80), respectively. Discrimination of women with fracture from controls improved when cortical porosity was added to FN aBMD and age (area under the receiver‐operating characteristic curve [AUC] 0.778 versus 0.751, p = 0.006) or marrow adiposity was added to FN aBMD and age (AUC 0.825 versus 0.751, p = 0.002). The model including FN aBMD, age, cortical porosity, trabecular thickness, and marrow adiposity had an AUC = 0.888. Results were similar for the distal radius. Whether marrow adiposity and cortical porosity indices improve the identification of women at risk for fractures requires validation in prospective studies. © 2019 American Society for Bone and Mineral Research

    Archéologie et paléoenvironnement sur le site du pont romain des Esclapes (Fréjus, Var)

    Get PDF
    Cet article présente les résultats paléoenvironnementaux et archéologiques acquis sur le site du pont romain des Esclapes, à 1,5 km à l’ouest de Fréjus (Var, France). La présence isolée de l’édifice dans le paysage, actuellement éloigné des voies de passage et des cours d’eau de la vallée, posait la question de l’évolution des milieux depuis l’Antiquité. Sur la base de ce constat, l’objectif des travaux engagés sur le site était de définir la nature des milieux à l’époque romaine en précisant la nature du cours d’eau qui passait sous le pont et l’aspect du couvert végétal des environs immédiats du site. Le volet paléoenvironnemental de l’étude a été réalisé à partir de l’examen de trois carottes sédimentaires prélevées sur le site qui ont fait l’objet d’analyses sédimentologiques, palynologiques, carpologiques et microfaunistiques (ostracodes et coquilles marines). Les paléo-paysages observés ont été datés par 14C (5 datations AMS). Les résultats présentés offrent un panorama des environnements depuis 4700 BP cal. à nos jours. Le paysage évolue à partir d’un milieu d’embouchure vers une lagune d’abord ouverte puis fermée, qui cède la place à la plaine alluviale actuelle. L’époque romaine correspond à la transition entre la lagune ouverte et la lagune en voie de fermeture. Ces données affinent la connaissance des paléo-paysages de la basse vallée de l’Argens et permettent de mieux comprendre ses modes de peuplement et d’exploitation.This article presents the palaeoenvironmental and archaeological results of the study of the Esclapes roman bridge site, located at 1.5 kilometers west of Fréjus (Var, France). The bridge is actually isolated in the landscape and far from all the rivers and roads of the valley. This position leads to the investigation of landscape evolution since the Antiquity. The purpose of this work is to define the palaeoenvironments during Roman times precising what the nature of the river flowing under the bridge was and what the vegetation around the site was. The palaeoenvironmental aspect of the study was based on the examination of 3 sedimentary cores, on which sedimentological, palynological, carpological and microfaunistical analysis were done. The palaeolandscapes were dated with the 14C method (5 AMS datings). The results present the environmental evolution from 4 700 BP cal. to nowadays. The landscape changes from a river-mouth situation first to an open and then to a closed lagoon, and finally to an alluvial plain. Roman times correspond to the transition between the open and the closed lagoon. These results precise the knowledge of the palaeolandscapes of the Argens lower valley and allow a better comprehension of its settlement and exploitation since the Bronze Age

    Cancer immunoediting by the innate immune system in the absence of adaptive immunity

    Get PDF
    Cancer immunoediting is the process whereby immune cells protect against cancer formation by sculpting the immunogenicity of developing tumors. Although the full process depends on innate and adaptive immunity, it remains unclear whether innate immunity alone is capable of immunoediting. To determine whether the innate immune system can edit tumor cells in the absence of adaptive immunity, we compared the incidence and immunogenicity of 3'methylcholanthrene-induced sarcomas in syngeneic wild-type, RAG2, and RAG2x γc mice. We found that innate immune cells could manifest cancer immunoediting activity in the absence of adaptive immunity. This activity required natural killer (NK) cells and interferon γ (IFN-γ), which mediated the induction of M1 macrophages. M1 macrophages could be elicited by administration of CD40 agonists, thereby restoring editing activity in RAG2x γc mice. Our results suggest that in the absence of adaptive immunity, NK cell production of IFN-γ induces M1 macrophages, which act as important effectors during cancer immunoediting

    Affective interaction with a virtual character through an fNIRS brain-computer interface

    Get PDF
    Affective brain-computer interfaces (BCI) harness Neuroscience knowledge to develop affective interaction from first principles. In this article, we explore affective engagement with a virtual agent through Neurofeedback (NF). We report an experiment where subjects engage with a virtual agent by expressing positive attitudes towards her under a NF paradigm. We use for affective input the asymmetric activity in the dorsolateral prefrontal cortex (DL-PFC), which has been previously found to be related to the high-level affective-motivational dimension of approach/avoidance. The magnitude of left-asymmetric DL-PFC activity, measured using functional near infrared spectroscopy (fNIRS) and treated as a proxy for approach, is mapped onto a control mechanism for the virtual agent’s facial expressions, in which action units (AUs) are activated through a neural network. We carried out an experiment with 18 subjects, which demonstrated that subjects are able to successfully engage with the virtual agent by controlling their mental disposition through NF, and that they perceived the agent’s responses as realistic and consistent with their projected mental disposition. This interaction paradigm is particularly relevant in the case of affective BCI as it facilitates the volitional activation of specific areas normally not under conscious control. Overall, our contribution reconciles a model of affect derived from brain metabolic data with an ecologically valid, yet computationally controllable, virtual affective communication environment
    corecore