223 research outputs found

    Reduction of the Body Burden of PCBs and DDE by Dietary Intervention in a Randomized Trial

    Get PDF
    Serum polychlorinated biphenyls (PCBs) in Anniston, AL, residents have been associated with hypertension and diabetes. There have been no systematic interventions to reduce PCB body burdens in Anniston or other populations. Our objective was to determine the efficacy of 15 g/day of dietary olestra to reduce PCBs in Anniston residents. Blood PCBs and 1,1-bis-(4-chlorophenyl)-2,2-dichloroethene were measured at baseline and 4-month intervals in a double-blind, placebo-controlled, 1-year trial. Participants with elevated serum PCBs were randomized into two groups of 14 and received potato crisps made with olestra or vegetable oil (VO). Elimination rates during the study period were compared with 5-year prestudy rates. Eleven participants in the olestra group and 12 in the VO group completed the study. Except for one participant in the VO group, reasons for dropout were unrelated to treatments. The elimination rate of 37 noncoplanar PCB congeners during the 1-year trial was faster during olestra consumption compared to the pretrial period (−0.0829±0.0357 and −0.00864±0.0116 year−1, respectively; P=.04), but not during VO consumption (−0.0413±0.0408 and −0.0283±0.0096 year−1, respectively; P=.27). The concentration of PCBs in two olestra group participants decreased by 27% and 25% during the trial. There was no significant time by group interaction in change from baseline. However, group main effects for total PCBs and PCB 153 were of borderline significance. This pilot study has demonstrated that olestra can safely reduce body burdens of PCBs and supports a larger intervention trial that may also determine whether reduction in PCBs will reduce the risk of hypertension and diabetes

    Transcriptomic analysis of crustacean neuropeptide signaling during the moult cycle in the green shore crab, Carcinus maenas

    Get PDF
    Abstract Background Ecdysis is an innate behaviour programme by which all arthropods moult their exoskeletons. The complex suite of interacting neuropeptides that orchestrate ecdysis is well studied in insects, but details of the crustacean ecdysis cassette are fragmented and our understanding of this process is comparatively crude, preventing a meaningful evolutionary comparison. To begin to address this issue we identified transcripts coding for neuropeptides and their putative receptors in the central nervous system (CNS) and Y-organs (YO) within the crab, Carcinus maenas, and mapped their expression profiles across accurately defined stages of the moult cycle using RNA-sequencing. We also studied gene expression within the epidermally-derived YO, the only defined role for which is the synthesis of ecdysteroid moulting hormones, to elucidate peptides and G protein-coupled receptors (GPCRs) that might have a function in ecdysis. Results Transcriptome mining of the CNS transcriptome yielded neuropeptide transcripts representing 47 neuropeptide families and 66 putative GPCRs. Neuropeptide transcripts that were differentially expressed across the moult cycle included carcikinin, crustacean hyperglycemic hormone-2, and crustacean cardioactive peptide, whilst a single putative neuropeptide receptor, proctolin R1, was differentially expressed. Carcikinin mRNA in particular exhibited dramatic increases in expression pre-moult, suggesting a role in ecdysis regulation. Crustacean hyperglycemic hormone-2 mRNA expression was elevated post- and pre-moult whilst that for crustacean cardioactive peptide, which regulates insect ecdysis and plays a role in stereotyped motor activity during crustacean ecdysis, was elevated in pre-moult. In the YO, several putative neuropeptide receptor transcripts were differentially expressed across the moult cycle, as was the mRNA for the neuropeptide, neuroparsin-1. Whilst differential gene expression of putative neuropeptide receptors was expected, the discovery and differential expression of neuropeptide transcripts was surprising. Analysis of GPCR transcript expression between YO and epidermis revealed 11 to be upregulated in the YO and thus are now candidates for peptide control of ecdysis. Conclusions The data presented represent a comprehensive survey of the deduced C. maenas neuropeptidome and putative GPCRs. Importantly, we have described the differential expression profiles of these transcripts across accurately staged moult cycles in tissues key to the ecdysis programme. This study provides important avenues for the future exploration of functionality of receptor-ligand pairs in crustaceans

    Lighting Up Clostridium Difficile: Reporting Gene Expression Using Fluorescent Lov Domains

    Get PDF
    The uses of fluorescent reporters derived from green fluorescent protein have proved invaluable for the visualisation of biological processes in bacteria grown under aerobic conditions. However, their requirement for oxygen has limited their application in obligate anaerobes such as Clostridium difficile. Fluorescent proteins derived from Light, Oxygen or Voltage sensing (LOV) domains have been shown to bridge this limitation, but their utility as translational fusions to monitor protein expression and localisation in a strict anaerobic bacterium has not been reported. Here we demonstrate the utility of phiLOV in three species of Clostridium and its application as a marker of real-time protein translation and dynamics through genetic fusion with the cell division protein, FtsZ. Time lapse microscopy of dividing cells suggests that Z ring assembly arises through the extension of the FtsZ arc starting from one point on the circumference. Furthermore, through incorporation of phiLOV into the flagella subunit, FliC, we show the potential of bacterial LOV-based fusion proteins to be successfully exported to the extracellular environment

    CO2 wettability of seal and reservoir rocks and the implications for carbon geo-sequestration

    Get PDF
    We review the literature data published on the topic of CO2 wettability of storage and seal rocks. We first introduce the concept of wettability and explain why it is important in the context of carbon geo-sequestration (CGS) projects, and review how it is measured. This is done to raise awareness of this parameter in the CGS community, which, as we show later on in this text, may have a dramatic impact on structural and residual trapping of CO2. These two trapping mechanisms would be severely and negatively affected in case of CO2-wet storage and/or seal rock. Overall, at the current state of the art, a substantial amount of work has been completed, and we find that: 1. Sandstone and limestone, plus pure minerals such as quartz, calcite, feldspar, and mica are strongly water wet in a CO2-water system. 2. Oil-wet limestone, oil-wet quartz, or coal is intermediate wet or CO2 wet in a CO2-water system. 3. The contact angle alone is insufficient for predicting capillary pressures in reservoir or seal rocks. 4. The current contact angle data have a large uncertainty. 5. Solid theoretical understanding on a molecular level of rock-CO2-brine interactions is currently limited. 6. In an ideal scenario, all seal and storage rocks in CGS formations are tested for their CO2 wettability. 7. Achieving representative subsurface conditions (especially in terms of the rock surface) in the laboratory is of key importance but also very challenging
    • …
    corecore