25 research outputs found

    Graphene quantum dots from chemistry to applications

    Get PDF
    Graphene quantum dots (GQDs) have been widely studied in recent years due to its unique structure-related properties, such as optical, electrical and optoelectrical properties. GQDs are considered new kind of quantum dots (QDs), as they are chemically and physically stable because of its intrinsic inert carbon property. Furthermore, GQDs are environmentally friendly due to its non-toxic and biologically inert properties, which have attracted worldwide interests from academic and industry. In this review, a number of GQDs preparation methods, such as hydrothermal method, microwave-assisted hydrothermal method, soft-template method, liquid exfoliation method, metal-catalyzed method and electron beam lithography method etc., are summarized. Their structural, morphological, chemical composition, optical, electrical and optoelectrical properties have been characterized and studied. A variety of elemental dopant, such as nitrogen, sulphur, chlorine, fluorine and potassium etc., have been doped into GQDs to diversify the functions of the material. The control of its size and shape has been realized by means of preparation parameters, such as synthesis temperature, growth time, source concentration and catalyst etc. As far as energy level engineering is concerned, the elemental doping has shown an introduction of energy level in GQDs which may tune the optical, electrical and optoelectrical properties of the GQDs. The applications of GQDs in biological imaging, optoelectrical detectors, solar cells, light emitting diodes, fluorescent agent, photocatalysis, and lithium ion battery are described. GQD composites, having optimized contents and properties, are also discussed to extend the applications of GQDs. Basic physical and chemical parameters of GQDs are summarized by tables in this review, which will provide readers useful information

    Frequent amplification of HDAC genes and efficacy of HDAC inhibitor chidamide and PD-1 blockade combination in soft tissue sarcoma

    No full text
    Background The advent of immune checkpoint therapy has been a tremendous advance in cancer treatment. However, the responses are still insufficient in patients with soft tissue sarcoma (STS). We aimed to identify rational combinations to increase the response to immune checkpoint therapy and improve survival.Methods Whole-exome sequencing (WES) was performed in 11 patients with liposarcoma. Somatic copy number alterations (SCNAs) were analyzed at the gene level to identify obvious amplification patterns in drug-target genes. The expression and prognostic value of class I histone deacetylases (HDACs) was evaluated in 49 patients with sarcoma in our center and confirmed in 263 sarcoma samples from The Tumor Cancer Genome Atlas (TCGA) database. Q-PCR, flow cytometry and RNA-seq were performed to determine the correlations between class I HDACs, chidamide and PD-L1 in vitro and in vivo. The efficacy of combining chidamide with PD-1 blockade was explored in an immunocompetent murine model and a small cohort of patients with advanced sarcoma. Western blot, ChIP assay and dual luciferase assessment were applied in the mechanistic study.Results The HDAC gene family was frequently amplified in STS. SCNAs in the HDAC gene family were extensively amplified in 8 of 11 (73%) patients with liposarcoma, based on a drug-target gene set, and we verified amplification in 76.65% (197/257) of cases by analyzing TCGA sarcoma cohort. Class I HDAC expression is associated with a poor prognosis for patients with STS, and its inhibition is responsible for promoting apoptosis and upregulating of programmed cell death ligand 1 (PD-L1). The HDAC class I inhibitor chidamide significantly increases PD-L1 expression, increased the infiltration of CD8+ T cells and reduced the number of MDSCs in the tumor microenvironment. The combination of chidamide with an anti-PD-1 antibody significantly promotes tumor regression and improves survival in a murine model. Moreover, chidamide combined with the anti-PD-1 antibody toripalimab is effective in patients with advanced and metastatic sarcoma, and the side effects are tolerable. Mechanistically, chidamide increases histone acetylation at the PD-L1 gene through the activation of the transcriptional factor STAT1.Conclusions The combination of chidamide and anti-programmed cell death 1 (PD-1) therapy represents a potentially important strategy for STS
    corecore