8 research outputs found

    In vitro models of medulloblastoma: choosing the right tool for the job

    Get PDF
    The recently-defined four molecular subgroups of medulloblastoma have required updating of our understanding of in vitro models to include molecular classification and risk stratification features from clinical practice. This review seeks to build a more comprehensive picture of the in vitro systems available for modelling medulloblastoma. The subtype classification and molecular characterisation for over 40 medulloblastoma cell-lines has been compiled, making it possible to identify the strengths and weaknesses in current model systems. Less than half (18/44) of established medulloblastoma cell-lines have been subgrouped. The majority of the subgrouped cell-lines (11/18) are Group 3 with MYC-amplification. SHH cell-lines are the next most common (4/18), half of which exhibit TP53 mutation. WNT and Group 4 subgroups, accounting for 50% of patients, remain underrepresented with 1 and 2 cell-lines respectively. In vitro modelling relies not only on incorporating appropriate tumour cells, but also on using systems with the relevant tissue architecture and phenotype as well as normal tissues. Novel ways of improving the clinical relevance of in vitro models are reviewed, focusing on 3D cell culture, extracellular matrix, co-cultures with normal cells and organotypic slices. This paper champions the establishment of a collaborative online-database and linked cell-bank to catalyse preclinical medulloblastoma research

    Fakty i kontrowersje związane z terapią komórkową w medycynie regeneracyjnej

    No full text
    Cellular therapy, as a part of regenerative medicine, implies to the treatment of human disorders with cells as a medical product, so called – “living drugs”. Usually such therapy is applied when other alternative efficient pharmacological therapies are not available. Stem cells of different origin: 1) tissue specific e.g. hematopethic, epithelial, neuronal, limbal; 2) mesenchymal stem cells (MSC) harvested from variety of tissues; 3) pluripotent stem cells: embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) – serve as a source of cells for regenerative medicine application, depending upon disease and application re- quirements. Currently MSC are the type of stem cells that are most frequently used in registered regenerative medicine clinical trials. In this paper we provide the information on the application of cell therapy in orthopedics, hematology, ophthalmology, dermatology, gastrology and neurology. The influence of origin of MSCs and iPSCs on their mode of action as therapeutic, regenerative agents are discussed. Advantages and disadvantages of application of different cell types for cell therapy are underlined. Last, but not least current low regulations in Poland and requirements of European regulatory bodies for cell therapy are pointed out and discussed
    corecore