27 research outputs found

    Marine species and climate change: using modelling techniques to investigate effects on species distributions

    Get PDF
    Anthropogenic climate change is one of the main challenges affecting the globe, with particular implications for the oceans. Marine climate change research has moved forward rapidly in recent years, and a range of physical model outputs are available that can be used by ecologists to help predict how species might be affected into the future. Policy makers require a level of understanding of how certain species and their ranges might change so that they can respond with sustainable management actions. This thesis aims to make use of a number of modelling techniques to explore implications of past and future conditions for marine species, and to appraise those tools that can be used under differing circumstances. Policy questions are answered relating to changes in the abundance and distribution of marine species. The links between historical climatic conditions and Barents Sea cod abundance are explored using Generalised Additive Models using data collected in the middle of the 20th century. This valuable historical data indicated that cod have temperature preferences and expand and shift their distributions based on environmental conditions. A simpler modelling technique is used to examine how oxygen conditions have changed in recent decades in the North Sea, how they might change in the future, and what implications this has for commercial fish species. The models show that oxygen conditions have improved recently and that they will not decrease to levels that result in large negative effects in the coming century. Species distribution modelling using a combination of global and downscaled model outputs shows that the UK will become more suitable for some non-native and harmful algal species in the 21st century, and less suitable for others. The model outputs contribute to the understanding of climate change effects and development of management tools to ensure the resilience of marine ecosystems into the future.Centre for Environment, Fisheries and Aquaculture Science (Cefas)Department for Environment, Food and Rural Affairs (Defra

    Historical Arctic Logbooks Provide Insights into Past Diets and Climatic Responses of Cod

    Get PDF
    Gadus morhua (Atlantic cod) stocks in the Barents Sea are currently at levels not seen since the 1950s. Causes for the population increase last century, and understanding of whether such large numbers will be maintained in the future, are unclear. To explore this, we digitised and interrogated historical cod catch and diet datasets from the Barents Sea. Seventeen years of catch data and 12 years of prey data spanning 1930–1959 cover unexplored spatial and temporal ranges, and importantly capture the end of a previous warm period, when temperatures were similar to those currently being experienced. This study aimed to evaluate cod catch per unit effort and prey frequency in relation to spatial, temporal and environmental variables. There was substantial spatio-temporal heterogeneity in catches through the time series. The highest catches were generally in the 1930s and 1940s, although at some localities more cod were recorded late in the 1950s. Generalized Additive Models showed that environmental, spatial and temporal variables are all valuable descriptors of cod catches, with the highest occurring from 15–45°E longitude and 73–77°N latitude, at bottom temperatures between 2 and 4°C and at depths between 150 and 250 m. Cod diets were highly variable during the study period, with frequent changes in the relative frequencies of different prey species, particularly Mallotus villosus (capelin). Environmental variables were particularly good at describing the importance of capelin and Clupea harengus (herring) in the diet. These new analyses support existing knowledge about how the ecology of the region is controlled by climatic variability. When viewed in combination with more recent data, these historical relationships will be valuable in forecasting the future of Barents Sea fisheries, and in understanding how environments and ecosystems may respond

    Exploring fishers’ perceptions of index insurance and coral reef health in the context of climate-driven changes in extreme events

    Get PDF
    Climate-change-driven storminess and extreme events are increasingly challenging fishers in tropical island countries. Weather-based index insurance is an emerging tool that can assist fishing communities in their recovery and adaptation to such events. In these regions, coral reefs support valuable fisheries and also provide coastal protection during extreme events. Surveying 80 fishers in Grenada, this exploratory study examined fishers’ perceptions of index insurance in the context of their experiences of extreme events. We also explore perceptions of reef health and its’ connections to fishing outcomes and coastal protection, given the indirect role this plays in supporting fishers’ resilience through associated fisheries and storm protection. Most fishers viewed extreme events as a severe risk to their livelihoods, affecting their ability to make future plans. Fishers comprehended the links between improved reef health and positive impacts on fishing (higher catches and incomes). Several challenges regarding index insurance were raised, which centred on themes of flexibility, affordability, inclusivity, and accessibility. These could pose barriers to fishers and undermine demand for or participation in such schemes. As such, research, design, and implementation of future index insurance schemes should consider issues raised by fishers to ensure that provision is equitable and improve uptake

    The impact of marine recreational fishing on key fish stocks in European waters

    Get PDF
    Marine recreational fishing (MRF) has been shown to substantially contribute to fishing mortality of marine fish. However, European MRF catches are only quantified for a small number of stocks, so it is unclear whether a significant part of fishing mortality is excluded from stock assessments. This study estimated: (i) European MRF removals, which were defined as landings plus dead releases; and (ii) impact at stock level by comparing the percentage contribution to total removal by MRF and commercial fishing. As MRF data were limited for some European countries, catches were reconstructed using a mixture of average release proportions, average fish weights, and extrapolation using the catch per fisher of the nearest country providing catch estimates. Where catch reconstructions exceeded 50%, data were excluded from further analysis. Furthermore, as MRF survey methodology can be variable, semi-quantitative estimates of bias and error were calculated for each stock. Only 10 of the 20 stocks assessed in this study had sufficient MRF data for full reliable estimates. Percentage contribution to total removals (MRF + commercial removals) by MRF ranged between 2% for Atlantic mackerel in the North Sea and Skagerrak and 43% for Atlantic pollack in the Celtic Seas and English Channel. The biomass removed ranged between 297 (± 116) tonnes (Atlantic cod in the western English Channel and southern Celtic seas) and 4820 (± 1889) tonnes (Atlantic mackerel in the North Sea and Skagerrak), but the errors were substantial. Additionally, the bias in the estimated removals was low for most stocks, with some positive biases found. The present study indicates that removals by MRF can represent a high proportion of the total removals for some European marine fish stocks, so inclusion in stock assessments should be routine. To achieve this, regular surveys of MRF are required to collect data essential for stock assessments

    Diets of the Barents Sea cod (Gadus morhua) from the 1930s to 2018

    Get PDF
    A new dataset on the diet of Atlantic cod in the Barents Sea from the 1930s to the present day has been compiled to produce one of the largest fish diet datasets available globally. Atlantic cod is one of the most ecologically and commercially important fish species in the North Atlantic. The stock in the Barents Sea is by far the largest, as a result of both successful management and favourable environmental conditions since the early 2000s. As a top predator, cod plays a key role in the Barents Sea ecosystem. The species has a broad diet consisting mainly of crustaceans and teleost fish, and both the amount and type of prey vary in space and time. The data – from Russia, Norway and the United Kingdom – represent quantitative stomach content records from more than 400 000 fish and qualitative data from 2.5 million fish. Many of the data are from joint collaborative surveys between Norway and Russia. The sampling was conducted throughout each year, allowing for seasonal, annual and decadal comparisons to be made. Visual analysis shows cod diets have changed considerably from the start of the dataset in the 1930s to the present day. There was a large proportion of herring in the diets in the 1930s, whereas in more recent decades capelin, invertebrates and other fish dominate. There are also significant interannual asynchronous fluctuations in prey, particularly capelin and euphausiids. Combining these datasets can help us understand how the environment and ecosystems are responding to climatic changes, and what influences the diet and prey switching of cod. Trends in temperature and variability indices can be tested against the occurrence of different prey items, and the effects of fishing pressure on cod and prey stocks on diet composition could be investigated. The dataset will also enable us to improve parametrization of food web models and to forecast how Barents Sea fisheries may respond in the future to management and to climate change. The Russian data are available through joint projects with the Polar Branch of the Russian Federal Research Institute of Fisheries and Oceanography (VNIRO).publishedVersio

    Pollution in the Arctic Ocean: An overview of multiple pressures and implications for ecosystem services

    Get PDF
    The Arctic is undergoing unprecedented change. Observations and models demonstrate significant perturbations to the physical and biological systems. Arctic species and ecosystems, particularly in the marine environment, are subject to a wide range of pressures from human activities, including exposure to a complex mixture of pollutants, climate change and fishing activity. These pressures affect the ecosystem services that the Arctic provides. Current international policies are attempting to support sustainable exploitation of Arctic resources with a view to balancing human wellbeing and environmental protection. However, assessments of the potential combined impacts of human activities are limited by data, particularly related to pollutants, a limited understanding of physical and biological processes, and single policies that are limited to ecosystem-level actions. This manuscript considers how, when combined, a suite of existing tools can be used to assess the impacts of pollutants in combination with other anthropogenic pressures on Arctic ecosystems, and on the services that these ecosystems provide. Recommendations are made for the advancement of targeted Arctic research to inform environmental practices and regulatory decisions

    Climate change impacts on the coral reefs of the UK Overseas Territory of the Pitcairn Islands: Resilience and adaptation considerations

    Get PDF
    The coral reefs of the Pitcairn Islands are in one of the most remote areas of the Pacific Ocean, and yet they are exposed to the impacts of anthropogenic climate change. The Pitcairn Islands Marine Protected Area was designated in 2016 and is one of the largest in the world, but the marine environment around these highly isolated islands remains poorly documented. Evidence collated here indicates that while the Pitcairn Islands' reefs have thus far been relatively sheltered from the effect of warming sea temperatures, there is substantial risk of future coral decalcification due to ocean acidification. The projected acceleration in the rate of sea level rise, and the reefs' exposure to risks from distant ocean swells and cold-water intrusions, add further uncertainty as to whether these islands and their reefs will continue to adapt and persist into the future. Coordinated action within the context of the Pitcairn Islands Marine Protected Area can help enhance the resilience of the reefs in the Pitcairn Islands. Options include management of other human pressures, control of invasive species and active reef interventions. More research, however, is needed in order to better assess what are the most appropriate and feasible options to protect these reefs

    Harmful algal blooms and climate change: exploring future distribution changes

    Get PDF
    Harmful algae can cause death in fish, shellfish, marine mammals, and humans, via their toxins or from effects associated with their sheer quantity. There are many species, which cause a variety of problems around north-west Europe, and the frequency and distribution of algal blooms have altered in the recent past. Species distribution modelling was used to understand how harmful algal species may respond in the future to climate change, by considering environmental preferences and how these may shift. Most distribution studies to date use low resolution global model outputs. In this study, high resolution, downscaled shelf seas climate projections for the north-west European shelf were nested within lower resolution global projections, to understand how the distribution of harmful algae may change by the mid to end of century. Projections suggest that the habitat of most species (defined by temperature, salinity, depth, and stratification) will shift north this century, with suitability increasing in the central and northern North Sea. An increase in occurrence here might lead to more frequent detrimental blooms if wind, irradiance and nutrient levels are also suitable. Prioritizing monitoring of species in these susceptible areas could help in establishing early-warning systems for aquaculture and health protection schemes

    A Review of the Tools Used for Marine Monitoring in the UK: Combining Historic and Contemporary Methods with Modeling and Socioeconomics to Fulfill Legislative Needs and Scientific Ambitions

    Get PDF
    Marine environmental monitoring is undertaken to provide evidence that environmental management targets are being met. Moreover, monitoring also provides context to marine science and over the last century has allowed development of a critical scientific understanding of the marine environment and the impacts that humans are having on it. The seas around the UK are currently monitored by targeted, impact-driven, programmes (e.g., fishery or pollution based monitoring) often using traditional techniques, many of which have not changed significantly since the early 1900s. The advent of a new wave of automated technology, in combination with changing political and economic circumstances, means that there is currently a strong drive to move toward a more refined, efficient, and effective way of monitoring. We describe the policy and scientific rationale for monitoring our seas, alongside a comprehensive description of the types of equipment and methodology currently used and the technologies that are likely to be used in the future. We contextualize the way new technologies and methodologies may impact monitoring and discuss how whole ecosystems models can give an integrated, comprehensive approach to impact assessment. Furthermore, we discuss how an understanding of the value of each data point is crucial to assess the true costs and benefits to society of a marine monitoring programme
    corecore