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Harmful algae can cause death in fish, shellfish, marine mammals, and humans, via their toxins or from effects associated with their sheer
quantity. There are many species, which cause a variety of problems around north-west Europe, and the frequency and distribution of algal
blooms have altered in the recent past. Species distribution modelling was used to understand how harmful algal species may respond in the
future to climate change, by considering environmental preferences and how these may shift. Most distribution studies to date use low reso-
lution global model outputs. In this study, high resolution, downscaled shelf seas climate projections for the north-west European shelf were
nested within lower resolution global projections, to understand how the distribution of harmful algae may change by the mid to end of cen-
tury. Projections suggest that the habitat of most species (defined by temperature, salinity, depth, and stratification) will shift north this cen-
tury, with suitability increasing in the central and northern North Sea. An increase in occurrence here might lead to more frequent
detrimental blooms if wind, irradiance and nutrient levels are also suitable. Prioritizing monitoring of species in these susceptible areas could
help in establishing early-warning systems for aquaculture and health protection schemes.
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Introduction
Climate change is altering the occurrence of marine species

around the world, reorganizing what has historically been consid-

ered the native and usual range of species. Marine algae, although

underpinning food webs, are sometimes considered a nuisance

with implications for society and the economy, especially certain

species of diatoms and dinoflagellates. There are approximately

300 harmful algal species (Berdalet et al., 2016) from most phyto-

plankton groups (Anderson et al., 2015), and some cause toxicity

to higher trophic level species, including fish, shellfish, marine

mammals, and humans (Wells et al., 2015). Harmful algal blooms

(HABs) are occurrences of algal species, which cause toxic effects

or otherwise cause harm. Certain algae produce noxious and

toxic substances, which accumulate in food chains and cause ill-

ness or death in animals and humans (Davidson et al., 2011,

2014). Direct contact with or ingestion of HABs can cause a num-

ber of different problems for animals, with knock-on fisheries

effects. Some harmful species are retained by filter feeding organ-

isms, such as bivalves, and cause Paralytic and Diarrhetic Shellfish

Poisoning (PSP and DSP), or they produce other toxic com-

pounds, which cause health problems and have economic impli-

cations for shellfish farms or fisheries (Anderson et al., 2015).
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Domoic acid, produced by certain diatoms, causes Amnesic

Shellfish Poisoning (ASP), which can cause death in humans as

well as marine mammals and sea birds (Tatters et al., 2012). In

other cases, high biomass occurrences of non-toxic species can

cause negative effects on ecosystems through their sheer quantity,

by reducing dissolved oxygen, blocking fish gills, and smothering

benthos (Davidson et al., 2014; Anderson et al., 2015; Kudela

et al., 2015; Wells et al., 2015). The high biomass of certain algae

during a bloom can cause mass decomposition and subsequent

reductions in oxygen, resulting in fish kills (Valiela et al., 1997;

Kudela et al., 2015) with subsequent ecological problems and eco-

nomic consequences for fisheries and aquaculture. Economic

losses include those to public health, fisheries, and aquaculture

closures, and lost recreation (Lewitus et al., 2012; Davidson et al.,

2014; Anderson et al., 2015). It has been estimated that HABs

cause an annual loss to the European Union of $1billion

(Hoagland and Scatasta, 2006). Shellfish harvest can be prevented

during blooms, and cause eventual loss of the shellfish if the

bloom is prolonged (Cusack et al., 2016). Other consequences in-

clude loss of threatened species and changes to ecosystems

(Berdalet et al., 2016). Around north-west Europe there are a

number of species of algae, which cause economic and human

health problems (Table 1). The consequences for food security

and safety mean that understanding, predicting and mitigating

harmful algal occurrences are a priority for scientists and policy

makers (Kudela et al., 2015).

Algal blooms are considered to have increased in frequency

and impact around the world in recent decades (Moore et al.,

2011; Lewitus et al., 2012; Glibert et al., 2014; Anderson et al.,

2015), with global risks to health and economies (Davidson et al.,

2014). Human modifications of the environment such as harbour

construction, ballast water release, and nutrient enrichment, may

have contributed to these changes (Berdalet et al., 2016).

However, species responses have varied and there are many dif-

ferent factors that affect frequency, location, and intensity of

bloom formation (Anderson et al., 2015) including upwelling,

currents, winds, vertical mixing, surface water temperature, and

nutrient supply (Davidson et al., 2014). Shifting climatic regimes

and temperature changes can affect these. This could alter the

composition of the phytoplankton community, increase or de-

crease the occurrence and geographic spread of bloom-forming

species (Moore et al., 2009; Berdalet et al., 2016; Kudela et al.,

2015; Wells et al., 2015), affect the timing of phytoplankton

blooms (Henson et al., 2017) and increase the window each year

when blooms can develop (Marques et al., 2010; Moore et al.

2011). For example, Karenia mikimotoi blooms are typically asso-

ciated with high rainfall and subsequent low-salinity events as

well as high-nutrient run off from land (Davidson et al., 2009;

Barnes et al., 2015). Alexandrium bloom formation occurs only

under certain temperature conditions and annually these condi-

tions have persisted for longer in recent years (Moore et al.,

2011). Sea surface temperatures in the North Sea have risen more

than the global average over the past 50 years (Hobday and Pecl,

2014). In the north-western European shelf seas area, from the

end of the 20th century to the end of the 21st there is projected to

be a further increase in annual mean sea surface temperature of

2.9�C, and a freshening of 0.41 psu (Tinker et al., 2016).

Observed temperature rises in recent decades have coincided with

an increase in phytoplankton in the North Sea and north-east

Atlantic (Bresnan et al., 2013) and notably diatoms such as

Pseudo-nitzschia spp. have increased (Hinder et al., 2012). In re-

cent years K. mikimotoi blooms have been seen further north

around the British Isles than in the past, potentially linked to

changes in duration of stratification (Davidson et al., 2009;

Table 1. Harmful algal species found around the UK, and the problems caused.

Species Taxonomy Distribution Problems caused

Alexandrium minutum* Planktonic dinoflagellate Bloom-forming, coastal regions. Widely
distributed.

Paralytic shellfish poisoning (PSP)

Alexandrium ostenfeldii* Planktonic dinoflagellate Coastal species along west coast of Europe
and Canada. No blooms recorded to date.

PSP

Alexandrium tamarense* Planktonic dinoflagellate Bloom-forming. Coastal regions of Europe,
Japan, North America.

Produces a number of toxins
including PSP. Not all strains
toxic.

Dinophysis acuminata* Planktonic dinoflagellate Bloom-forming. Coastal waters of North
Atlantic and Pacific.

Causes Diarrhetic Shellfish
Poisoning (DSP). Can be toxic
at low concentrations.

Dinophysis acuta* Planktonic dinoflagellate Bloom-forming. Found worldwide. Produces a number of toxins
including DSP

Gymnodinium
catenatum*

Planktonic dinoflagellate Warm, temperate coastal waters Produces PSP

Karenia mikimotoiD Planktonic dinoflagellate Bloom-forming. Worldwide distribution. Produces brevetoxins, neurotoxic
shellfish poisoning (NSP)

Prorocentrum lima* Benthic dinoflagellate Estuarine species with world-wide
distribution

Produces a number of toxins
including DSP

Pseudo-nitzschia
australis�

Diatom Widely distributed in temperate and
subtropical waters

Produces domoic and isodomoic
acids

Pseudo-nitzschia
delicatissima^

Diatom Widely distributed in Arctic, temperate, and
subtropical waters

Some strains produce domoic acid

Pseudo-nitzschia
fraudulenta^

Diatom Widely distributed in temperate and
subtropical waters

Produces domoic acid

Pseudo-nitzschia seriata� Diatom Northern Atlantic and more recently Pacific Produces domoic acid poisoning
in shellfish

Sources: DWoods Hole Oceanographic Institute (2016), *Smithsonian (2015), �WoRMS (2014a), ^WoRMS (2014b), ^WoRMS (2014c), and
�
WoRMS (2014d).
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Bresnan et al., 2013). However, certain dinoflagellates in the

North Sea such as Prorocentrum spp. have decreased in abun-

dance over the last decade, likely as a result of increasing temper-

atures and windier conditions (Hinder et al., 2012). Shellfish in

Scottish waters have witnessed a decline in toxins associated with

paralytic shellfish poisoning in the last decade (Bresnan et al.,

2013). Nutrient availability has also a large part to play, and in

particular affects outbreaks of high biomass HABs (Davidson

et al., 2014). These examples show that different species are af-

fected in different ways by changes in environmental conditions.

Integrating knowledge of biogeography into climate change

impact studies is fundamental for better understanding the effects

of environmental change on biodiversity (Hannah et al., 2002),

and modelling is required to turn past observations into future

predictions (Anderson et al., 2015). One of the best techniques

that can be used to achieve this is species distribution modelling

(e.g. Jones et al., 2013; Weinert et al., 2016). By considering the

environmental conditions within, which a species lives now,

the potential future distribution can be projected based on how

the physical environment will change. Such modelling techniques

can be used to project how marine species might move in re-

sponse to climate change, by combining occurrence observations

with environmental variables (e.g. Reiss et al., 2015; Rutterford

et al., 2015; Barton et al., 2016; Weinert et al., 2016; Townhill

et al., 2017). The application to planktonic and algal species is rel-

atively new although such models have been used to provide early

warning systems for HABs, and in particular they have been

deployed successfully for projecting Pseudo-nitzschia spp. distri-

butions on the Pacific and Atlantic coasts of North America

(Anderson et al., 2009, 2010). Barton et al. (2016) used the maxi-

mum entropy model Maxent to assess the future suitability of

areas in the North Atlantic for 87 diatom and dinoflagellate spe-

cies. The authors modelled a north and eastward shift, causing a

“shuffle” or redistribution in community composition. To inves-

tigate the spread of harmful species in a more focused local area,

the use of downscaled climate models is required (Wells et al.,

2015), which capture fine-scale dynamics in shelf seas processes

including tides (Tinker et al., 2015).

In this study it is not the intention to predict the occurrence

and location of an individual bloom event, because these are deter-

mined by stochastic processes and discrete weather events.

Instead the aim is to provide a broad-brush indication of changing

geographic affinity. Outputs from global climate models were

combined with those from a dynamically downscaled north-west

European shelf model to (i) project how suitable environ-

mental conditions may change in the future, and then to (ii) quan-

tify how the distributions of important HAB species may change

and, which species will be more or less problematic in the coming

century.

Material and methods
Species occurrence data
Species occurrence data were downloaded from two databases:

the Ocean Biogeographic Information System (OBIS) (http://

www.iobis.org) and the Global Biodiversity Information Facility

(GBIF) (http://data.gbif.org) (see Supplementary Appendix S1

for GBIF citations). Species occurrences from March to October

were collated, since these are the most likely to contribute to large

algal blooms in the northern hemisphere. In addition, the UK

government collects algal data on a regular basis and so data were

also obtained from the Scottish Association for Marine Science

(SAMS), the Agri-Food Biosciences Institute (AFBI) in Northern

Ireland, and the Centre for the Environment, Fisheries, and

Aquaculture Science (Cefas) in England and Wales, with permis-

sion granted by the Food Standards Agency. Not all data were

recorded to species level, and so only the Dinophysis acuminata

and D. acuta occurrence data from AFBI, and Prorocentrum lima

from all agencies were included. The data were cleaned to remove

duplicates, occurrences outside the known depth ranges and

Food and Agriculture Organisation of the United Nations (FAO)

regions (taken from OBIS), and to remove those recorded as be-

ing on land. The depth limit was rounded up to 100 m to ensure

that all plausible occurrences were included. The data were then

aggregated to a binary (presence/absence) 0.5� latitude � 0.5�

longitude grid.

Nested climate projections
High resolution regional downscaled climate model outputs were

nested into global climate model outputs (Townhill et al., 2017),

which allowed the whole geographical range of a species’ environ-

mental exposure to be incorporated into the habitat suitability

function, while also allowing for fine scale local projections in the

area of particular interest. All projections were obtained from the

UK Met Office Hadley Centre and were for the “medium” emis-

sions climate change scenario (SRES A1B). Global projections

from a perturbed physics ensemble (PPE) at a global 1.25 degree

resolution (Collins et al., 2011) of the Atmosphere-Ocean Global

Climate Model HadCM3 (Gordon et al., 2000; Pope et al., 2000)

were used under an SRES A1B business as usual, medium emis-

sions scenario (Tinker et al., 2016). Within this medium emis-

sions scenario, assumptions are made that the world expects

rapid economic growth, a peak in population mid-century, fol-

lowed by the growing use of low carbon technologies (IPCC,

2007). This PPE consisted of the unperturbed (standard) member

of the model, with 10 ensemble members, which had atmospheric

parameters perturbed to span the uncertainty in climate sensitiv-

ity. The unperturbed member is used in this study, which is

equivalent to the standard version of HadCM3. The unperturbed

member of this ensemble shelf seas model was downscaled using

POLCOMS (Proudman Oceanographic Laboratory Coastal

Ocean Modelling System; Holt and James, 2001; Holt et al.,

2001), which produced a north-west European shelf seas projec-

tion. This downscaling resulted in a 12 km resolution (1/9� lati-

tude by 1/6� longitude grid), from 43�N, 63�3302000N to 18�200W,

13�E (Figure 1). A 30-year average of 1980–2009 (centred on

1995) annual means was used to represent the present time pe-

riod, because the majority of the species observations were taken

between these dates. The future time horizons to which the mod-

els were applied were 2040–2069 (centred on 2055) representing

the near future, and 2069–2098 (centred on 2084) representing

the end of century. Variables used were those considered to most

affect algal occurrence: near bottom and sea surface temperature

and salinity, and the differences between the surface and bottom of

each (bulk temperature and salinity, which gives an approximation

of stratification), and bathymetry. The downscaled shelf seas pro-

jections were nested within the driving global projections using

Python 2.7 (Python Software Foundation, 2010) (packages

“netCDF4” and “numpy”) resulting in a dataset with a resolution

of 0.5 degrees. The global ocean fields were bi-linearly interpolated

from the native 1.25� grid cell resolution to the 0.5�, while the
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downscaled regional fields were aggregated up (averaged) from

their native 1/6� � 1/9� resolution to the required 0.5�. These were

then copied into the appropriate region within the global model.

As the regional data were produced by forcing the global model,

the data are consistent and match at the boundary. It was necessary

to use a resolution intermediate between the two original models

because the local-scale processes are still captured in the shelf seas

area, but the global data is not interpolated more than is appropri-

ate. The resulting 0.5 degree grid of environmental parameters was

then used to drive the species distribution model.

Species distribution modelling
The Maximum Entropy (Maxent) bioclimate envelope model

(Phillips et al., 2006) was used to determine the present day and fu-

ture habitat suitability of each HAB species. This model is described

in Jones et al. (2012, 2013) and has performed well in comparison

with other models in previous marine studies (Elith et al., 2006; Reiss

et al., 2011; Vierod et al., 2014) and for algal species (Barton et al.,

2016). Maxent generates habitat suitability by randomly selecting

training points and combining presence-only occurrence data with

chosen environmental variables, using the rest of the data points to

test the model, and then predicting the future habitat suitability by

forcing the model based on the same variables. Maxent estimates the

probability distribution of the habitat suitability by finding the most

uniform distribution (the one with the maximum entropy), within

the constraints of incomplete information (Phillips et al., 2006). The

term “relative habitat suitability” is used here to describe the bathym-

etry and hydrographic conditions that the species currently experi-

ence. It does not include the bottom substrata or local ecosystem

processes such as nutrient availability. Maxent was run for each spe-

cies in turn using the model interface (version 3.3.3k) downloaded

from http://www.cs.princeton.edu/�schapire/maxent/, for the present

day, near future and end of century climate data, giving a habitat

suitability score between 0 and 1. “Clamping” was used for model fit-

ting, which ensures that the species’ habitat does not get projected

outside the suitable environmental conditions and with “jacknife,”

which checks the importance of each variable. Across the species, the

number of training points chosen by the model varied because there

was considerable variation in the number of available presence data

points. The species with more training samples are likely to present a

better fit to reality than others (numbers of presence and training

data points are summarized in Table 2). Maxent used the Area under

the Curve (AUC) value to test the performance of each model,

bounded by 0–1, with 1 being the best fit. A threshold AUC value of

0.8 was considered acceptable, based on Mercks et al. (2011), who

produced a review of habitat suitability models. This modelling tech-

nique is affected by autocorrelation because the species presence sam-

pling is inherently biased. Therefore, the value of >0.8 is used as a

guide rather than an absolute measure of robustness.

Latitudinal centroids
The latitudinal centroid for each time period and species was calcu-

lated. This gives the centre of the latitudinal range, and can be com-

pared between the present to the future time periods. The centroid

(C) was calculated using the equation from Cheung et al. (2009):

C ¼

Pn

i¼1

Lati � Abdi

Pn
i¼1 Abdi

;

where Lati is the central latitude of the spatial cell i, Abd is the

predicted relative habitat suitability of the same cell, and n is the

20°0'E10°0'E0°0'10°0'W20°0'W

70°0'N

60°0'N

50°0'N

40°0'N

Figure 1. Extent of the north-west Europe shelf seas model.
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total number of cells. The distance between the latitudinal cent-

roids in the present and future years was then calculated in kilo-

metres (Cheung et al., 2011):

Distance kmð Þ ¼ Latm � Latnð Þ � p
180
� 6 378:2;

where Latm and Latn are the latitudinal centroids in the present

(n) and projected (m) timeslices, and the approximated equato-

rial radius of the Earth is 6 378.2 km. This gives the latitudinal

shift. The latitudinal shift of each species within the UK EEZ was

also calculated.

Results
Following preliminary analyses, two species were excluded

(Pseudo-nitzschia delicatissima and Pseudo-nitzschia seriata).

Both were so widespread worldwide that Maxent used around

4 000 training samples with resulting AUC values of 0.8. Their

current widespread nature likely means that their future habitat

suitability will be similarly widespread and so the models yield

few additional insights, hence they were excluded from further

assessment.

Maxent provided a good fit for the remaining 10 species, with

AUC values above 0.9. All species exhibited a change in habitat

suitability distribution from the present day to mid and end of

century. For all species, the variable with the highest percentage

contribution to the model fit was either bathymetry or near bed

temperature (model attributes summarized in Table 2).

The majority of the species exhibited a northward shift in shelf

seas and UK EEZ habitat suitability from the present day to mid

and end of century (Figures 2 and 3, Table 3). All species exhib-

ited a northward global shift. Most of the species had a larger

northward shift at the end of the century than mid-century. For

the shelf seas area specifically, D. acuta and Gymnodinium catena-

tum had the greatest predicted change in habitat suitability for

mid and end of century of around 800–100 km. Globally, G. cate-

natum showed the greatest northward shift at more than 700 km

by the end of century. Three species showed a shelf seas south-

ward shift however: Alexandrium ostenfeldii, A. minutum, and

Pseudo-nitzschia australis, the first two of which had bathymetry

as their highest contributing variable.

Looking in detail at the north-western European shelf seas, the

habitat suitability for the majority of the species increased further

north (as shown in purple in Figure 4). The maps show that the

central and northern North Sea in particular witness large

increases in habitat suitability, with a decrease in suitability in the

Celtic Sea and the English Channel for many species.

Alexandrium minutum is one species that exhibits a southward

latitudinal shift in the shelf seas, and it can be seen in Figure 4

that the suitability has the greatest increase along the shelf edge,

reflected in bathymetry being the variable with the highest contri-

bution to the model. Within the UK exclusive economic zone

(EEZ), this species shows an overall decrease, especially in the

North Sea, but an increase in the far north and north-west.

Dinophysis acuta shows a strong decrease in suitability in the shelf

seas area, and particularly off the north-east coast of Scotland and

in the English Channel, while G. catenatum has an overall increase

within the UK EEZ, especially in the North Sea. Prorocentrum

lima shows a decrease to the north of Scotland and Ireland and

off south-west England, but an increase or no change in much of

the rest of the area and the UK EEZ.

Discussion
Our results show that around the north-west European shelf seas

the suitable areas for the occurrence of HAB species are likely to

change as a result of climate change in the coming century. In the

majority of cases, the suitable environmental conditions will be

found further north in the shelf seas than under present day con-

ditions. Exceptions to this are A. minutum (change to 2084), A.

ostenfeldii and P. australis all of which showed a southward habi-

tat suitability shift. This may be due to the differences between

species in their temperature, salinity and bathymetric preferences

and the interactions between these variables. For example A. min-

utum exhibited a higher change in habitat suitability along the

shelf edge, and the habitat suitability is constrained by depth (and

subsequent effects on circulation and oxygenation) more than

temperature. This southward shift projected for Alexandrium spe-

cies corresponds with an observed decrease in recent years around

Scotland in PSP toxicity associated with Alexandrium (Bresnan

et al., 2013). Some species, including Alexandrium have a benthic

cyst stage and thus are affected by both benthic and pelagic

conditions.

Table 2. Summary of the Maxent model attributes for each species.

Species
AUC
value

Number of presence
data points

Number of
training samples

Two variables with the highest
percentage contribution

Percent contribution
of those variables

Alexandrium minutum 0.996 51 31 Bathymetry; near bed temperature 70.2; 12.6
Alexandrium ostenfeldii 0.977 68 48 Bathymetry; near bed salinity 55.3; 28.6
Alexandrium tamarense 0.959 88 46 Bathymetry; sea surface salinity 70.8; 22.8
Dinophysis acuminata 0.951 853 640 Near bed temperature; sea surface

temperature
54.9; 22.5

Dimophysis acuta 0.950 810 704 Near bed temperature; sea surface
salinity

54.6; 28.0

Gymnodinium catenatum 0.982 26 17 Near bed temperature; sea surface
temperature

73.1; 14.3

Karenia mikimotoi 0.990 81 56 Bathymetry; near bed temperature 34.7; 33.4
Prorocentrum lima 0.979 241 149 Near bed temperature; sea surface

temperature
67.8; 12.8

Pseudo-nitzschia australis 0.994 26 23 Bathymetry; near bed temperature 53.7; 20.2
Pseudo-nitzschia fraudulenta 0.991 17 10 Bathymetry; near bed temperature 61.6; 21.8
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The species with the furthest projected northward shift in habi-

tat suitability within the shelf seas were D. acuta and G. catena-

tum. These are both planktonic dinoflagellates, which form

blooms. Dinophysis acuta can cause Diarrhetic Shellfish Poisoning

(DSP) and can even be toxic at low concentrations whereas

G. catenatum can cause Paralytic Shellfish Poisoning (PSP)

(Hallegraef et al., 2004). Overall the relative habitat suitability of

D. acuta is projected to decrease around the UK, with the
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Figure 2. The global poleward shift in the habitat suitability for each species from 1995 to 2055 and to 2084.
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Figure 3. The habitat suitability shift within the north-west European shelf seas area for each species from 1995 to 2055 and to 2084.
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Table 3. Habitat suitability latitudinal centroids for the shelf seas area from the present day, near future, and end of century.

Species

Latitudinal centroid

1980–2009 2040–2069 2069–2098

Shelf seas UK EEZ Shelf seas UK EEZ Shelf seas UK EEZ

Alexandrium minutum 55.25 55.74 55.29 55.78 54.77 55.87
Alexandrium ostenfeldii 55.37 56.34 55.33 56.33 55.24 56.26
Alexandrium tamarense 55.19 56.23 55.32 56.29 55.50 56.40
Dinophysis acuminata 54.60 56.74 54.56 56.91 54.64 56.86
Dinophysis acuta 54.47 56.83 55.17 57.21 55.40 57.29
Gymnodinium catenatum 53.65 56.37 54.46 55.87 54.57 55.92
Karenia mikimotoi 55.43 56.33 55.51 56.42 55.51 56.45
Prorocentrum lima 54.32 55.73 54.69 55.76 54.73 55.75
Pseudo-nitzschia australis 55.34 56.11 55.22 56.02 55.02 55.83
Pseudo-nitzschia fraudulenta 55.22 56.38 55.32 56.41 55.32 56.41

Those with southerly shifts in centroid are shown in bold.

Figure 4. The spatial change in habitat suitability (ranging from �1 to 1) for four of the algal species. Alexandrium minutum shows a
southward shelf seas shift in suitability, while the other three species illustrated are those with the largest northward shift. The UK EEZ is
outlined. The outline of the land shows the model resolution.
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exception of the north-west of Scotland, but there is a large in-

crease in suitability projected for G. catenatum. If this species has

a large geographic shift in range, then there may be more occur-

rences of blooms affecting shellfish fisheries and farms around the

north of the UK and in Scandinavia. Dinophysis acuta can be

retained within shellfish tissue for up to 6 months (Hallegraef

et al., 2004), potentially causing huge economic consequences for

farmers after a bloom. Incidents of DSP have become more fre-

quent and prolonged across the whole of the UK shelf since it was

first recorded in 1997 (Hinder et al., 2011), with 19 incidents be-

tween 1999 and 2009. Hinder et al. (2011) report that fisheries

have been closed throughout that period for up to 7 months as a

result of an outbreak. In 2000–2001, there was the longest closure

of a shellfishery ever recorded in the UK, with aquaculture and

scallop fisheries being closed throughout the year due to shellfish

poisoning events (Hinder et al., 2011), and a facility in Ireland

was closed for 48 weeks in 2006 because of Dinophysis spp.

(Cusack et al., 2016). If G. catenatum and other PSP species expe-

rience changes in their habitat suitabilities, then farms and fisher-

ies further north may begin to be affected. Mapping the changes

in suitability in relation to the UK EEZ shows how UK farmers

and fishers may be more affected by some species than others in

the near-term and the distant future.

Comparisons with other studies that use alternative models or

driving datasets, show that projections tend to point towards a

northward shift in HAB occurrence in Europe. A study by Gobler

et al. (2017) found that growth rates and days per year of blooms

of D. acuminata and Alexandrium fundyense increased between

1982 and 2016 across the Atlantic. For D. acuminata and for

Alexandrium spp., this study projects a northward shift globally,

but less so in the shelf seas. The expectation in this study of a gen-

eral northward shift for most species in the coming century is

similar to that suggested by Barton et al. (2016), who, using simi-

lar models, found a north and eastward shift using presence data

from the continuous plankton recorder and climate data with a

one degree resolution. The authors found that, of the 87 species

assessed, most diatoms and dinoflagellates showed this pattern.

Karenia mikimotoi in particular is one species that is frequently

cited as moving further northwards around the UK (Davidson

et al., 2009; Bresnan et al., 2013). The results here show that it is

likely to exhibit a northwards shift within the shelf seas, and glob-

ally, but not to the same extent as most of the other species.

Prorocentrum lima however does show a much greater latitudinal

shift in this study, consistent with Glibert et al. (2014) who found

that Prorocentrum spp. would have a greater expansion in north-

ern Europe in the future, compared with Karenina spp. Glibert

et al. (2014) projected changes in pelagic Prorocentrum spp. and

Karenia spp. in north-west Europe, based on climate projections

and assumptions of future nutrient inputs, and found that both

genera would expand in the region, increasing vulnerability of

coastal ecosystems and impacts of HAB events. Comparison of

the maps of future suitable area for Prorocentrum spp. from this

study and Glibert et al. (2014) show that both studies show an in-

crease in suitability in the eastern North Sea towards the end of

the century. This study does not show the same increased

suitability in the southern North Sea or English Channel as

Glibert et al. (2014). This could potentially be owing to the differ-

ent climate model used in each study, or because the Glibert

species were pelagic as opposed to the benthic P. lima. Glibert

et al. found a smaller increase in Karenia spp. suitability in the

north east Atlantic compared with Prorocentrum spp., consistent

with this study. The changes in suitability found in this study,

and these other studies emphasize the importance of regional

long- and near-term forecasting and risk assessment in reducing

the impacts of these species. The different extents of the expan-

sions and latitudinal shifts for different species found in these

studies support the idea of a future “shift and shuffle” in algal

communities suggested by Barton et al. (2016).

Species distribution models assume that the tolerances and

preferences of species relative to environmental conditions re-

main the same and do not take into account potential for adapta-

tion. Some HAB species may not be able to adapt to new

temperature and stratification regimes or changes in variability,

such as A. fundyense, which in 2010 in the Gulf of Maine had

growth constrained by stratification, causing an early diatom

bloom and subsequent nutrient depletion (McGillicuddy et al.,

2011). The lack of nutrients meant that the resting cysts from the

previous year were unable to grow. However, in laboratory

experiments on A. minutum, this species was found to physiologi-

cally and genetically adapt to changing pH and temperature con-

ditions (Flores-Moya et al., 2012). This example illustrates the

complexity of predicting the physiological and adaptation

responses to climate change. Experiments can be combined with

climate data to investigate how a species would respond to pro-

jected future conditions, as was done for dinoflagellate species in

the Caribbean region (Kibler et al., 2015). The empirical growth

function of Alexandrium was determined by Bill et al. (2016)

based on temperature and salinity experiments, and historical

bloom risk determined. Nearly all historical bloom occurrences

occurred within the periods of identified bloom risk. Such experi-

ments can help to determine if the future conditions predicted by

a model are really suitable for a bloom or toxin formation.

With HABs, there is not necessarily a strong correlation be-

tween species abundance and toxin production (Hinder et al.,

2011), but the models in this study are useful in projecting where

the species might occur in the future. To predict individual

events, local and near-term environmental factors, which are re-

quired for a bloom to form must be considered, such as irradi-

ance, cloud cover, precipitation, run-off, and winds (Davidson

et al., 2009; Barnes et al., 2015; Wells et al., 2015).

Biogeochemical modelling of the North Sea has shown that pri-

mary production is expected to increase over the coming century

due to climate change, and the annual onset of spring phyto-

plankton blooms will occur earlier in the year (van der Molen

et al., 2013), and may extend for longer periods of time (Marques

et al., 2010; Moore et al., 2011). In some areas the duration of

stratification and the spring blooms will be extended, while in

others they will remain the same, due to local conditions, particu-

larly wind, and current (van der Molen et al., 2013). A measure of

stratification was included in this study but further, more de-

tailed, modelling could attempt to incorporate these seasonal

meso-scale aspects of wind and rainfall to achieve more specific

near-term predictions of bloom formation, as has been attempted

for Pseudo-nitzschia spp. (Anderson et al., 2009). An increased al-

gal growth rate caused by environmental conditions may result in

nutrient limitation for blooms (Hall-Spencer and Allen, 2015),

adding a further complication to predictions and long-term pro-

jections. Moore et al. (2015) modelled the responses of

Alexandrium to upwelling winds and circulation in Puget Sound

using mechanistic models, and were able to determine the effects

of atmospheric heating, river flows and ocean inputs from up-

welling on blooms. They concluded that by 2050, global warming
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would lead to 30 more days a year with conditions favourable to

Alexandrium blooms. Another study on Alexandrium found that

suitable conditions for blooms would occur up to 2 months ear-

lier and finish up to a month later in Puget Sound by the end of

century (Moore et al., 2011). Such a longer “window of oppor-

tunity” makes understanding, which species are likely to become

more or less prevalent vital for monitoring and early warning

systems.

Species distribution modelling is a useful tool for understand-

ing the future changes in marine environments, but it is easy to

over-interpret the results. Many researchers have been sceptical

about the utility of such models (Bell and Schlaepfer, 2016).

There are many ecological processes, which are not captured by

the model used here, and without consideration of these pro-

cesses the modelling is oversimplified and measures of fit can be

misleading (Bell and Schlaepfer, 2016). It is important that the

results of the modelling from this study are taken as relative

measures of the suitability of the environment in the broadest

sense for a bloom to form, providing all other environmental

processes come together at the local scale, and not as a definite

prediction of where and when a bloom will form. Knowledge of

relative suitability between species, location and time can be used

to help us understand, which species might become more prob-

lematic in the future, and which to prioritize for monitoring and

forecasting. Long-term studies can also be used to pick up species,

which may not be of current concern but which may be so in the

future. For example, in the west coast of North America previ-

ously relatively rare toxic species are being seen more frequently

(Lewitus et al., 2012).

In this study, bathymetry and hydrographic variables were

used as the key drivers of HAB occurrence. As further climate

projections become available, and particularly coupled biogeo-

chemistry models, further variables can be included in distribu-

tion models, to investigate the roles for example of oxygen, pH,

and nutrients. Reduced pH is known to increase the production

of domoic acid in Pseudo-nitzschia species, even at levels of pH

that can occur today (Tatters et al., 2012). A biogeochemical

modelling study of the north-west European shelf projected that

in the English Channel and the Irish Sea diatoms would increase

in number towards the end of the century, whereas the larger

dinoflagellates would decrease because they are outcompeted

(Artioli et al., 2014). This work included the projected influences

of ocean acidification, which in certain places and at certain times

can cancel out the effects of other climatic factors, but in other

instances can exacerbate them (Artioli et al., 2014). Such studies

could be combined with species distribution modelling to under-

stand the specific requirements of different groups of organisms,

along with their potential spatial distribution changes. Large-scale

climate patterns, such as the Pacific Decadal Oscillation (PDO)

and the North Atlantic Oscillation (NAO), can affect the occur-

rence of some HABs (Marques et al., 2010) and so distribution

modelling could be used to look at different phases of such cycles.

To drive the suitability models, presence records were obtained

from global databases, which contain data submitted worldwide.

Whilst this data was quality checked to remove anomalies and

records unlikely to be correct (such as outside known geographic

regions), it is not a perfect database of presence records, and can

be biased. The dataset may omit certain regions where no data is

collected, or has not been entered into the database, but the use

of this data means that general global extents of algal occurrences

are captured, and so most of the species’ environmental envelope

is used within the model. Limiting the model to more detailed

data in Europe would mean that climatic conditions, such as tem-

perature, are not captured in the distribution modelling, and so

projecting to future warmer conditions is less robust. There are

efforts within Europe to coordinate recording of HAB occur-

rences (such as http://haedat.iode.org/), and so as Europe-wide,

species-specific, data are available in the future, and as a longer

time series develops, it would be possible to make use of this less

biased data in distribution modelling.

This study has shown that harmful algae and HABs are likely

to occur further north on average around north-west Europe in

the coming century, with some species’ habitat suitabilities shift-

ing faster and further than others. Suitability for most species

increases in the central and northern North Sea. These changes

have implications for aquaculture, recreation, and ecosystems.

Understanding which species may become more prevalent in the

future is important to marine management as it allows early in-

tervention by implementing surveillance and mitigation measures

to reduce the economic and ecological harm of these species, and

can also raises awareness around shellfish grounds and among

healthcare professionals. Routine recording of these species allows

us to further understand the local conditions that cause each spe-

cies to occur and produce toxins (Hinder et al., 2011), and fur-

ther records would allow these models to be refined. As more

advanced climate modelling and forecasting are developed, this

type of modelling output may be useful in marine spatial plan-

ning, such as when identifying certain coastlines for aquaculture.

Changes to harmful algae occurrence and the nuisance caused is

already a feature of a changing marine climate, and it will con-

tinue to be so, but studies such as this are highly valuable in

anticipating and mitigating their impacts and improving

surveillance.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.

Acknowledgements
The work was supported by the Cefas Seedcorn project Harmful

Algal Blooms—Predictions Including Climate Change (DP369).

J. Tinker was additionally supported by the Joint UK Department

for Energy and Climate Change/Department for Environment,

Food, and Rural Affairs Met Office Hadley Centre Climate

Programme (GA01101). M. Jones was supported by the Nippon

Foundation-University of British Columbia Nereus Programme.

S. Simpson received support from a NERC KE Fellowship (S.D.S.;

NE/J500616/2). J. Pinnegar received additional support from the

European Union’s Horizon 2020, Climate change and European

aquatic resources (CERES) project, under grant agreement

678193. UK algal occurrence data for Dinophysis acuminata,

D. acuta, and Prorocentrum lima were provided by the Scottish

Association for Marine Science and the Agri-Food Biosciences

Institute (Northern Ireland) and Cefas (England and Wales), with

permission for use granted by the Food Standards Agency.

References
Anderson, C., Siegel, D., Kudela, R., and Brzezinski, M. 2009.

Empirical models of toxigenic Pseudo-nitzschia blooms: potential
use as a remote detection tool in the Santa Barbara Channel.
Harmful Algae, 8: 478–492.

Harmful algal blooms and climate change 9

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article-abstract/doi/10.1093/icesjm
s/fsy113/5094977 by U

niversity of East Anglia user on 26 Septem
ber 2018

http://haedat.iode.org/
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsy113#supplementary-data


Anderson, C. R., Sapiano, M. R. P., Krishna Prasad, M. B., Long, W.,
Tango, P. J., Brown, C. W., and Murtugudde, R. 2010. Predicting
potentially toxigenic Pseudo-nitzschia blooms in the Chesapeake
Bay. Journal of Marine Systems, 83: 127–140.

Anderson, C. R., Moore, S. K., Tomlinson, M. C., Silke, J., and
Cusack, C. K. 2015. Living with harmful algal blooms in a chang-
ing world: strategies for modelling and mitigating their effects in
coastal marine ecosystems. In Coastal and Marine Hazards, Risks,
and Disasters. Ed. by J. F. Shroder, J. T. Ellis, and D. J. Sherman.
Elsevier, The Netherlands.

Artioli, Y., Blackford, J. C., Nondal, G., Bellerby, R. G. J., Wakelin, S.
L., Holt, J. T., Butenschön, M. et al. 2014. Heterogeneity of
impacts of high CO2 on the North Western European Shelf.
Biogeosciences, 11: 601–612.

Barnes, M. K., Tilstone, G. H., Smyth, T. J., Widdicombe, C. E.,
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