148 research outputs found

    Doctor behaviors that impact patient satisfaction

    Get PDF
    Patient satisfaction with their doctor is an essential component of healthcare that impacts both patient health outcomes and fiscal success of healthcare organizations. This study identifies doctor behaviors that act as drivers of patient satisfaction when doctor expertise is set aside and determines the importance of these behaviors between different age groups. Survey data were gathered from two samples, one comprising younger adults at a mid-size Midwestern university (n=100) and one comprising older adults from a national market research survey panel provider (n=187). Subjects were asked to rate their satisfaction with their doctors from 0‑100 and rate the importance of 21 doctor behaviors from 1-5. Results support evaluating patients’ overall views with their doctors separately from their views of their doctors when ignoring doctors’ expertise, as three unique doctor behaviors were identified when ignoring the doctors’ expertise (i.e., not rushed, long-term relationship, and being fun). Results also support the existence of age-related patient satisfaction drivers. Unique satisfaction drivers among younger patients include not rushing the interaction, being fun, conveying a caring demeanor, and protecting patient privacy. Conversely, unique satisfaction drivers among older patients include listening, conveying friendliness, building long-term relationships, and seeking patient input. Findings indicate that expertise-independent doctor behaviors are quantifiable and demonstrate clear patterns of importance in terms of patient satisfaction to different age groups. They also align with prior research findings that behaviors traditionally classified as “soft skills” like smiling and active listening are important attributes when considering patient satisfaction. Experience Framework This article is associated with the Staff & Provider Engagement lens of The Beryl Institute Experience Framework (https://theberylinstitute.org/experience-framework/). Access other PXJ articles related to this lens. Access other resources related to this lens

    The origin of the mass scales for maximal star formation efficiency and quenching: the critical role of Supernovae

    Full text link
    We use the Henriques et al. (2015) version of the Munich galaxy formation model (L-GALAXIES) to investigate why the halo and stellar mass scales above which galaxies are quenched are constant with redshift and coincide with the scale where baryons are most efficiently converted into stars. This model assumes that central galaxies are quenched by AGN feedback when hot halo gas accretes onto a supermassive black hole. Nevertheless, we find that supernova (SN) feedback sets both mass scales. As haloes grow above a threshold mass, SNe can no longer eject material so their hot gas content increases, enhancing the cooling rate onto the central galaxy, its cold gas content, its star formation rate and the growth rate of its central black hole. Strong AGN feedback terminates this short-lived phase by suppressing the fuel supply for star formation. Despite strong evolution of the halo mass - temperature relation, quenching occurs at a redshift-independent halo and stellar mass which coincides with the mass where baryons have been converted into stars with maximal efficiency. These regularities and coincidences are a result of the specific parameters selected by MCMC tuning of the model to fit the observed abundance and passive fraction of galaxies over the redshift range 0<z<3. Thus they are required by the observed evolution of the galaxy population, at least in the context of models of this type.Comment: 12 pages, 8 figures, submitted to MNRA

    Group-finding with photometric redshifts: The Photo-z Probability Peaks algorithm

    Get PDF
    We present a galaxy group-finding algorithm, the Photo-z Probability Peaks (P3) algorithm, optimized for locating small galaxy groups using photometric redshift data by searching for peaks in the signal-to-noise of the local overdensity of galaxies in a three-dimensional grid. This method is an improvement over similar two-dimensional matched-filter methods in reducing background contamination through the use of redshift information, allowing it to accurately detect groups at lower richness. We present the results of tests of our algorithm on galaxy catalogues from the Millennium Simulation. Using a minimum S/N of 3 for detected groups, a group aperture size of 0.25 Mpc/h, and assuming photometric redshift accuracy of sigma_z = 0.05 it attains a purity of 84% and detects ~295 groups/deg.^2 with an average group richness of 8.6 members. Assuming photometric redshift accuracy of sigma_z = 0.02, it attains a purity of 97% and detects ~143 groups/deg.^2 with an average group richness of 12.5 members. We also test our algorithm on data available for the COSMOS field and the presently-available fields from the CFHTLS-Wide survey, presenting preliminary results of this analysis.Comment: Accepted for publication by MNRAS, 16 pages, 11 color figure

    Merger and Ring Galaxy Formation Rates at z<=2

    Full text link
    We compare the observed merger rate of galaxies over cosmic time and the frequency of collisional ring galaxies (CRGs), with analytic models and halo merger and collision rates from a large cosmological simulation. In the Lambda cold dark matter (LCDM) model we find that the cosmic {\it merger fraction} does not evolve strongly between 0.2<z<2, implying that the observed decrease of the cosmic star formation rate since z~1 might not be tied to a disappearing population of major mergers. Halos hosting massive galaxies undergo on average ~2 mergers from z~2 up to present day, reflecting the late assembly time for the massive systems and the related downsizing problem. The cosmic {\it merger rate} declines with redshift: at the present time it is a factor of 10 lower than at z~2, in reasonable agreement with the current available data. The rate of CRG formation derived from the interactions between halo progenitors up to z=2 is found to be a good tracer of the cosmic merger rate. In the LCDM model the rate of CRGs as well as the merger rate do not scale as (1+z)^m, as suggested by previous models. Our predictions of cosmic merger and CRG rates may be applied to forthcoming surveys such as GOODS and zCOSMOS.Comment: Accepted for a publication on MNRAS. More references added and a comparison with previous work

    Aplicación de la sección 11 instrumentos financieros básicos conforme las normas internacionales de información financiera para pequeñas y medianas entidades en las transacciones de la empresa Rumalyc S.A, en el período 2021

    Get PDF
    Las NIIF para Pymes facilitan la elaboración y análisis de los estados financieros para los dueños de las empresas y sus inversionistas, es por eso que decidimos conocer y aplicar en este trabajo investigativo, un estudio exhaustivo de la sección 11 instrumentos financieros en la empresa Rumaluc S.A. En el entendimiento de esta norma se plantea la realización de un estudio de la manera más didáctica de conjugar la teoría de las normas con las practicas dentro del proceso contable, con los posibles casos que se puede presentar en el desarrollo de las actividades que realizamos en la empresa Rumalyc S.A. Con la aplicación de la Sección 11 de las NIIF para Pymes, la empresa tendrá unos estados financieros más razonable, en el que los socios podrán tomar decisiones acertadas y con mayor entendimiento, por tal razón, estamos presentando todos los aspectos importantes de la norma, dando a conocer desde un concepto hasta reconocimiento de los instrumentos financier

    A Multi-Institutional Partnership Catalyzing the Commercialization of Medical Devices and Biotechnology Products.

    Get PDF
    The commercialization of medical devices and biotechnology products is characterized by high failure rates and long development lead times particularly among start-up enterprises. To increase the success rate of these high-risk ventures, the University of Massachusetts Lowell (UML) and University of Massachusetts Medical School (UMMS) partnered to create key academic support centers with programs to accelerate entrepreneurship and innovation in this industry. In 2008, UML and UMMS founded the Massachusetts Medical Device Development Center (M2D2), which is a business and technology incubator that provides business planning, product prototyping, laboratory services, access to clinical testing, and ecosystem networking to medical device and biotech startup firms. M2D2 has three physical locations that encompass approximately 40,000 square feet. Recently, M2D2 leveraged these resources to expand into new areas such as health security, point of care technologies for heart, lung, blood, and sleep disorders, and rapid diagnostics to detect SARS-CoV-2. Since its inception, M2D2 has vetted approximately 260 medical device and biotech start-up companies for inclusion in its programs and provided active support to more than 80 firms. This manuscript describes how two UMass campuses leveraged institutional, state, and Federal resources to create a thriving entrepreneurial environment for medical device and biotech companies

    Evolution of the Luminosity Function and Colors of Galaxies in a Lambda-CDM Universe

    Full text link
    The luminosity function of galaxies is derived from a cosmological hydrodynamic simulation of a Lambda cold dark matter (CDM) universe with the aid of a stellar population synthesis model. At z=0, the resulting B band luminosity function has a flat faint end slope of \alpha \approx -1.15 with the characteristic luminosity and the normalization in a fair agreement with observations, while the dark matter halo mass function is steep with a slope of \alpha \approx -2. The colour distribution of galaxies also agrees well with local observations. We also discuss the evolution of the luminosity function, and the colour distribution of galaxies from z=0 to 5. A large evolution of the characteristic mass in the stellar mass function due to number evolution is compensated by luminosity evolution; the characteristic luminosity increases only by 0.8 mag from z=0 to 2, and then declines towards higher redshift, while the B band luminosity density continues to increase from z=0 to 5 (but only slowly at z>3).Comment: 6 pages, including 4 figures, mn2e style. Accepted to MNRAS pink page

    The Zurich Environmental Study (ZENS) of galaxies in groups along the cosmic web. V. properties and frequency of merging satellites and centrals in different environments

    Get PDF
    We use the Zurich ENvironmental Study (ZENS) database to investigate the environmental dependence of the merger fraction Γ\Gamma and merging galaxy properties in a sample of ~1300 group galaxies with M>109.2MM>10^{9.2}M_\odot and 0.05<z<0.0585. In all galaxy mass bins investigated in our study, we find that Γ\Gamma decreases by a factor of ~2-3 in groups with halo masses MHALO>1013.5MM_{HALO}>10^{13.5} M_\odot relative to less massive systems, indicating a suppression of merger activity in large potential wells. In the fiducial case of relaxed groups only, we measure a variation ΔΓ/Δlog(MHALO)0.07\Delta\Gamma/\Delta \log (M_{HALO}) \sim - 0.07 dex1^{-1}, which is almost independent of galaxy mass and merger stage. At galaxy masses >1010.2M>10^{10.2} M_\odot, most mergers are dry accretions of quenched satellites onto quenched centrals, leading to a strong increase of Γ\Gamma with decreasing group-centric distance at these mass scales.Both satellite and central galaxies in these high mass mergers do not differ in color and structural properties from a control sample of nonmerging galaxies of equal mass and rank. At galaxy masses <1010.2M<10^{10.2} M_\odot, where we mostly probe satellite-satellite pairs and mergers between star-forming systems, close pairs (projected distance <1020<10-20 kpc) show instead 2×\sim2\times enhanced (specific) star formation rates and 1.5×\sim1.5\times larger sizes than similar mass, nonmerging satellites. The increase in both size and SFR leads to similar surface star-formation densities in the merging and control-sample satellite populations.Comment: Published in ApJ, 797, 12

    The mysteries of mammatus clouds: Observations and formation mechanisms

    Get PDF
    Mammatus clouds are an intriguing enigma of atmospheric fluid dynamics and cloud physics. Most commonly observed on the underside of cumulonimbus anvils, mammatus also occur on the underside of cirrus, cirrocumulus, altocumulus, altostratus, and stratocumulus, as well as in contrails from jet aircraft and pyrocumulus ash clouds from volcanic eruptions. Despite their aesthetic appearance, mammatus have been the subject of few quantitative research studies. Observations of mammatus have been obtained largely through serendipitous opportunities with a single observing system (e.g., aircraft penetrations, visual observations, lidar, radar) or tangential observations from field programs with other objectives. Theories describing mammatus remain untested, as adequate measurements for validation do not exist because of the small distance scales and short time scales of mammatus. Modeling studies of mammatus are virtually nonexistent. As a result, relatively little is known about the environment, formation mechanisms, properties, microphysics, and dynamics of mammatus. This paper presents a review of mammatus clouds that addresses these mysteries. Previous observations of mammatus and proposed formation mechanisms are discussed. These hypothesized mechanisms are anvil subsidence, subcloud evaporation/sublimation, melting, hydrometeor fallout, cloud-base detrainment instability, radiative effects, gravity waves, Kelvin-Helmholtz instability, Rayleigh-Taylor instability, and Rayleigh-Bénard-like convection. Other issues addressed in this paper include whether mammatus are composed of ice or liquid water hydrometeors, why mammatus are smooth, what controls the temporal and spatial scales and organization of individual mammatus lobes, and what are the properties of volcanic ash clouds that produce mammatus? The similarities and differences between mammatus, virga, stalactites, and reticular clouds are also discussed. Finally, because much still remains to be learned, research opportunities are described for using mammatus as a window into the microphysical, turbulent, and dynamical processes occurring on the underside of clouds. © 2006 American Meteorological Society

    The Impact of Cooling and Feedback on Disc Galaxies

    Get PDF
    We present detailed, analytical models for the formation of disc galaxies to investigate the impact that cooling and feedback have on their structural properties. In particular, we investigate which observables extracted directly from the models are best suited as virial mass estimators, and to what extent they allow the recovery of the model input parameters regarding the feedback and cooling efficiencies. Contrary to naive expectations, the luminosities and circular velocities of disc galaxies are extremely poor indicators of total virial mass. Instead, we show that the product of disc scale length and rotation velocity squared yields a much more robust estimate. We show that feedback can cause a narrow correlation between galaxy mass fraction and halo spin parameter, similar to that found recently by van den Bosch, Burkert and Swaters from an analysis of dwarf galaxy rotation curves. Finally we investigate the impact that cooling and feedback have on the colors, metallicities, star formation histories and Tully-Fisher relation of disc galaxies.Comment: 20 pages, 12 figures. To be published in MNRA
    corecore