197 research outputs found

    Erwartungen der Eltern an das Bewegungsangebot der Sportvereine

    Get PDF
    Die Magisterarbeit beschäftigt sich mit den Erwartungen der Eltern an das Bewegungsangebot des Sportvereins der Kinder. Dargestellt wird dies anhand des Leichtathletikvereins DSG Wien. Ein Ziel dieser Arbeit war es möglichst viel über die Eltern selbst in Bezug auf deren Sportverhalten, aber auch über deren Motive, Einstellungen, Verhaltensweisen und Wünsche den Sportverein ihrer Kinder betreffend, in Erfahrung zu bringen. Im theoretischen Teil wird das „Kind sein“ heute und das „Eltern sein“ heute beschrieben, um die Lebenswelten der Eltern und Kinder besser verstehen zu können. Es wird die Situation des Sportvereins heute, der Kinder im Sportverein und der Kinderleichtathletik erläutert. Die Darstellung des Leichtathletikvereins DSG Wien rundet den theoretischen Teil ab. Im praktischen Teil dieser Arbeit wird anhand von qualitativen Interviews von acht Elternpaaren, deren Kinder bei der DSG trainieren gezeigt, welche Erwartungen die Eltern an den Sportverein ihrer Kinder haben. Die Haupterwartungen der Eltern sind, dass die Kinder Spaß haben, dass das Training ohne Leistungsdruck („Drill“) abläuft und variationsreich, vielfältig und dem Alter der Kinder entsprechend gestaltet wird. Die Eltern erwarten sich auch, dass alle Kinder motiviert und gefördert werden unabhängig vom Leistungsstand. Nach Meinung der Eltern soll der Verein soziale Kompetenzen wie Teamfähigkeit und Fairness vermitteln

    Daily Caffeine Intake Induces Concentration-Dependent Medial Temporal Plasticity in Humans: A Multimodal Double-Blind Randomized Controlled Trial

    Get PDF
    Caffeine is commonly used to combat high sleep pressure on a daily basis. However, interference with sleep-wake regulation could disturb neural homeostasis and insufficient sleep could lead to alterations in human gray matter. Hence, in this double-blind, randomized, cross-over study, we examined the impact of 10-day caffeine (3 × 150 mg/day) on human gray matter volumes (GMVs) and cerebral blood flow (CBF) by fMRI MP-RAGE and arterial spin-labeling sequences in 20 habitual caffeine consumers, compared with 10-day placebo (3 × 150 mg/day). Sleep pressure was quantified by electroencephalographic slow-wave activity (SWA) in the previous nighttime sleep. Nonparametric voxel-based analyses revealed a significant reduction in GMV in the medial temporal lobe (mTL) after 10 days of caffeine intake compared with 10 days of placebo, voxel-wisely adjusted for CBF considering the decreased perfusion after caffeine intake compared with placebo. Larger GMV reductions were associated with higher individual concentrations of caffeine and paraxanthine. Sleep SWA was, however, neither different between conditions nor associated with caffeine-induced GMV reductions. Therefore, the data do not suggest a link between sleep depth during daily caffeine intake and changes in brain morphology. In conclusion, daily caffeine intake might induce neural plasticity in the mTL depending on individual metabolic processes

    Daily Caffeine Intake Induces Concentration-Dependent Medial Temporal Plasticity in Humans: A Multimodal Double-Blind Randomized Controlled Trial

    Full text link
    Caffeine is commonly used to combat high sleep pressure on a daily basis. However, interference with sleep–wake regulation could disturb neural homeostasis and insufficient sleep could lead to alterations in human gray matter. Hence, in this double-blind, randomized, cross-over study, we examined the impact of 10-day caffeine (3 × 150 mg/day) on human gray matter volumes (GMVs) and cerebral blood flow (CBF) by fMRI MP-RAGE and arterial spin-labeling sequences in 20 habitual caffeine consumers, compared with 10-day placebo (3 × 150 mg/day). Sleep pressure was quantified by electroencephalographic slow-wave activity (SWA) in the previous nighttime sleep. Nonparametric voxel-based analyses revealed a significant reduction in GMV in the medial temporal lobe (mTL) after 10 days of caffeine intake compared with 10 days of placebo, voxel-wisely adjusted for CBF considering the decreased perfusion after caffeine intake compared with placebo. Larger GMV reductions were associated with higher individual concentrations of caffeine and paraxanthine. Sleep SWA was, however, neither different between conditions nor associated with caffeine-induced GMV reductions. Therefore, the data do not suggest a link between sleep depth during daily caffeine intake and changes in brain morphology. In conclusion, daily caffeine intake might induce neural plasticity in the mTL depending on individual metabolic processes

    Evidence that the multiflorine‐derived substituted quinazolidine 55P0251 augments insulin secretion and lowers blood glucose via antagonism at α2‐adrenoceptors in mice

    Get PDF
    To investigate the mechanism of action of 55P0251, a novel multiflorine‐derived substituted quinazolidine that augments insulin release and lowers blood glucose in rodents, but does not act via mechanisms addressed by any antidiabetic agent in clinical use.Materials and MethodsUsing male mice, we determined the effects of 55P0251 on glucose tolerance, insulin secretion from isolated islets and blood oxygen saturation, including head‐to‐head comparison of 55P0251 to its inverted enantiomer 55P0250, as well as to other anti‐hyperglycaemic multiflorine derivatives discovered in our programme.Results55P0251 was clearly superior to its inverted enantiomer in the glucose tolerance test (area under the curve: 11.3 mg/kg 55P0251, 1.19 ± 0.04 min*mol/L vs 55P0250, 1.80 ± 0.04 min*mol/L; P P P ConclusionsOur findings suggest that 55P0251 and related multiflorine derivatives are to be categorized as α2‐adrenoceptor antagonists with potential to lower blood glucose by blocking α2A‐adrenoceptors on pancreatic β cells.</p

    Investigation of salicylate hepatic responses in comparison with chemical analogues of the drug

    Get PDF
    AbstractAnti-hyperglycaemic effects of the hydroxybenzoic acid salicylate might stem from effects of the drug on mitochondrial uncoupling, activation of AMP-activated protein kinase, and inhibition of NF-κB signalling. Here, we have gauged the contribution of these effects to control of hepatocyte glucose production, comparing salicylate with inactive hydroxybenzoic acid analogues of the drug. In rat H4IIE hepatoma cells, salicylate was the only drug tested that activated AMPK. Salicylate also reduced mTOR signalling, but this property was observed widely among the analogues. In a sub-panel of analogues, salicylate alone reduced promoter activity of the key gluconeogenic enzyme glucose 6-phosphatase and suppressed basal glucose production in mouse primary hepatocytes. Both salicylate and 2,6 dihydroxybenzoic acid suppressed TNFα-induced IκB degradation, and in genetic knockout experiments, we found that the effect of salicylate on IκB degradation was AMPK-independent. Previous data also identified AMPK-independent regulation of glucose but we found that direct inhibition of neither NF-κB nor mTOR signalling suppressed glucose production, suggesting that other factors besides these cell signalling pathways may need to be considered to account for this response to salicylate. We found, for example, that H4IIE cells were exquisitely sensitive to uncoupling with modest doses of salicylate, which occurred on a similar time course to another anti-hyperglycaemic uncoupling agent 2,4-dinitrophenol, while there was no discernible effect at all of two salicylate analogues which are not anti-hyperglycaemic. This finding supports much earlier literature suggesting that salicylates exert anti-hyperglycaemic effects at least in part through uncoupling

    Screening for Active Small Molecules in Mitochondrial Complex I Deficient Patient's Fibroblasts, Reveals AICAR as the Most Beneficial Compound

    Get PDF
    Congenital deficiency of the mitochondrial respiratory chain complex I (CI) is a common defect of oxidative phosphorylation (OXPHOS). Despite major advances in the biochemical and molecular diagnostics and the deciphering of CI structure, function assembly and pathomechanism, there is currently no satisfactory cure for patients with mitochondrial complex I defects. Small molecules provide one feasible therapeutic option, however their use has not been systematically evaluated using a standardized experimental system. In order to evaluate potentially therapeutic compounds, we set up a relatively simple system measuring different parameters using only a small amount of patient's fibroblasts, in glucose free medium, where growth is highly OXPOS dependent. Ten different compounds were screened using fibroblasts derived from seven CI patients, harboring different mutations

    Activation of Peroxisome Proliferator-Activated Receptor Gamma by Rosiglitazone Increases Sirt6 Expression and Ameliorates Hepatic Steatosis in Rats

    Get PDF
    Sirt6 has been implicated in the regulation of hepatic lipid metabolism and the development of hepatic steatosis. The aim of this study was to address the potential role of Sirt6 in the protective effects of rosiglitazone (RGZ) on hepatic steatosis.) by stomach gavage for 6 weeks. The involvement of Sirt6 in the RGZ's regulation was evaluated by Sirt6 knockdown in AML12 mouse hepatocytes.RGZ treatment ameliorated hepatic lipid accumulation and increased expression of Sirt6, peroxisome proliferator-activated receptor gamma coactivtor-1-α (Ppargc1a/PGC1-α) and Forkhead box O1 (Foxo1) in rat livers. AMP-activated protein kinase (AMPK) phosphorylation was also increased by RGZ, accompanied by alterations in phosphorylation of LKB1. Interestingly, in free fatty acid-treated cells, Sirt6 knockdown increased hepatocyte lipid accumulation measured as increased triglyceride contents (p = 0.035), suggesting that Sirt6 may be beneficial in reducing hepatic fat accumulation. In addition, Sirt6 knockdown abolished the effects of RGZ on hepatocyte fat accumulation, mRNA and protein expression of Ppargc1a/PGC1-α and Foxo1, and phosphorylation levels of LKB1 and AMPK, suggesting that Sirt6 is involved in RGZ-mediated metabolic effects.Our results demonstrate that RGZ significantly decreased hepatic lipid accumulation, and that this process appeared to be mediated by the activation of the Sirt6-AMPK pathway. We propose Sirt6 as a possible therapeutic target for hepatic steatosis

    AMP-Activated Protein Kinase:A Target for Drugs both Ancient and Modern

    Get PDF
    The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status. It is activated, by a mechanism requiring the tumor suppressor LKB1, by metabolic stresses that increase cellular ADP:ATP and/or AMP:ATP ratios. Once activated, it switches on catabolic pathways that generate ATP, while switching off biosynthetic pathways and cell-cycle progress. These effects suggest that AMPK activators might be useful for treatment and/or prevention of type 2 diabetes and cancer. Indeed, AMPK is activated by the drugs metformin and salicylate, the latter being the major breakdown product of aspirin. Metformin is widely used to treat diabetes, while there is epidemiological evidence that both metformin and aspirin provide protection against cancer. We review the mechanisms of AMPK activation by these and other drugs, and by natural products derived from traditional herbal medicines
    corecore