35 research outputs found

    The role of mercury, selenium and the Se-Hg antagonism on cognitive neurodevelopment: A 40-month follow-up of the Italian mother-child PHIME cohort

    Get PDF
    Despite a 15-year long effort to define the \u201csafety\u201d of fish intake during pregnancy, there remains still uncertainty on this important public health issue. The evaluation of the toxic effects of contaminants, particularly mercury (Hg) in fish-eating populations is complicated by the fact that sea-food is also rich in beneficial nutrients, such as selenium (Se). There is toxicological plausibility of an antagonistic effects between Se and Hg, and some theoretical support for the inclusion of the Se\u2013Hg interaction to better assess the risk linked with fish intake. To assess the effects of exposure to low-level Hg through fish consumption on the developing brain and the interaction between Hg and Se, we conducted an analysis at age 40 months in Italian children, enrolled in a prospective mother-child cohort, comparing additive and multiplicative models. Participant subjects were the 470 children born within the Northern Adriatic Cohort II (NAC-II) cohort who were tested by using the Bayley Scales of Infant and Toddler Development third edition (Bayley-III) (BSID-III) at age 40. Family demographic and socioeconomic information, pregnancy and delivery history, parental and child medical history and food consumption were assessed through questionnaires. Maternal blood samples were collected during pregnancy, cord blood at birth and maternal milk 1 month after delivery. As other exposures of interest, we considered the level of Se in maternal and cord blood and in breast milk and the potential Se\u2013Hg antagonism. Se and inverse of THg (1:THg) concentrations were categorized according to the tertiles of their distributions, in low, medium and high levels of exposure. The lower end of the composite cognitive score distribution closest to 20% was defined as suboptimal development. Multiple logistic regression were applied to assess the association between the dichotomized composite cognitive score and the categorized exposure to Se and 1:THg, and the antagonism between Se and 1:THg. In the recruiting period, 900 pregnant women were enrolled in the cohort; 767 of these remained in the study at delivery and 470 children at 40 months. After excluding preterm births, 456 children were used in the final analyses. The larger difference in risk for suboptimal neurodevelopment was observed for the category with High THg and Low Se with OR = 2.55 (90% CI 1.02; 6.41) under the multiplicative and OR = 1.33 (90% CI 0.80; 1.87) under the additive model. The category High THg and High Se showed a very slightly better fit of the additive model (OR = 1.07, 90% CI 0.65; 1.50) versus the multiplicative (OR = 1.66, 90% CI 0.73; 1.77). A negative \u2013 antagonistic \u2013 interaction term for this category was estimated under the multiplicative model giving an OR = 1.17 (90% CI 0.42; 3.28). Although this evidence of the effects of the Se\u2013Hg antagonism on the children neuro-development needs to be confirmed, if Se can counterbalance Hg toxicity, the evaluation of the effect on human health of fish consumption, should also consider the diverse ratios between Se and Hg concentration in different fish species

    Nutrient intake during pregnancy and adherence to dietary recommendations: The mediterranean phime cohort

    Get PDF
    Few studies provide a detailed description of dietary habits during pregnancy, despite the central role of nutrition for the health of the mother and offspring. This paper describes the dietary habits, energy and nutrient intake in pregnant women from four countries belonging to the Mediterranean PHIME cohort (Croatia, Greece, Italy and Slovenia) and evaluates their adherence to the European Food Safety Authority (EFSA) recommendations. A total of 1436 women were included in the present analysis. Maternal diet was assessed using a food frequency questionnaire (FFQ). The mean macro and micronutrient intakes were estimated and compared with the dietary reference values (DRVs). The percentage distribution of the 16 food groups in the total intake of each macronutrient was estimated. All women shared a similar diet during pregnancy; almost all the women in the four countries exceeded the DRV for sugars, and the total fat intake was above the DRV in most women in all the countries, as was the contribution of saturated fatty acids (SFAs) to the total energy intake. In all four countries, we observed an increased risk of micronutrient deficiency for iron, folate and vitamin D. Shared guidelines, implemented at both the national and European level, are essential to improve the maternal nutritional status during pregnancy

    Circulating TRAIL Shows a Significant Post-Partum Decline Associated to Stressful Conditions

    Get PDF
    Background: Since circulating levels of TNF-related apoptosis inducing ligand (TRAIL) may be important in the physiopathology of pregnancy, we tested the hypothesis that TRAIL levels change at delivery in response to stressful conditions. Methods/Principal Findings: We conducted a longitudinal study in a cohort of 73 women examined at week 12, week 16, delivery and in the corresponding cord blood (CB). Serum TRAIL was assessed in relationship with maternal characteristics and to biochemical parameters. TRAIL did not vary between 12 (67.6627.6 pg/ml, means6SD) and 16 (64.0616.2 pg/ml) weeks ’ gestation, while displaying a significant decline after partum (49.3626.4 pg/ml). Using a cut-off decline.20 pg/ml between week 12 and delivery, the subset of women with the higher decline of circulating TRAIL (41.7%) showed the following characteristics: i) nullipara, ii) higher age, iii) operational vaginal delivery or urgent CS, iv) did not receive analgesia during labor, v) induced labor. CB TRAIL was significantly higher (131.6652 pg/ml) with respect to the corresponding maternal TRAIL, and the variables significantly associated with the first quartile of CB TRAIL (,90 pg/ml) were higher prepregnancy BMI, induction of labor and fetal distress. With respect to the biochemical parameters, maternal TRAIL at delivery showed an inverse correlation with C-reactive protein (CRP), total cortisol, glycemia and insulin at bivariate analysis, but only with CRP at multivariate analysis

    A missense mutation in the MLKL brace region promotes lethal neonatal inflammation and hematopoietic dysfunction

    No full text
    MLKL is the essential effector of necroptosis, a form of programmed lytic cell death. We have isolated a mouse strain with a single missense mutation, Mlkl(D139V), that alters the two-helix 'brace' that connects the killer four-helix bundle and regulatory pseudokinase domains. This confers constitutive, RIPK3 independent killing activity to MLKL. Homozygous mutant mice develop lethal postnatal inflammation of the salivary glands and mediastinum. The normal embryonic development of Mlkl(D139V) homozygotes until birth, and the absence of any overt phenotype in heterozygotes provides important in vivo precedent for the capacity of cells to clear activated MLKL. These observations offer an important insight into the potential disease-modulating roles of three common human MLKL polymorphisms that encode amino acid substitutions within or adjacent to the brace region. Compound heterozygosity of these variants is found at up to 12-fold the expected frequency in patients that suffer from a pediatric autoinflammatory disease, chronic recurrent multifocal osteomyelitis (CRMO). Necroptosis is a regulated form of inflammatory cell death driven by activated MLKL. Here, the authors identify a mutation in the brace region that confers constitutive activation, leading to lethal inflammation in homozygous mutant mice and providing insight into human mutations in this region

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Mevalonate kinase deficiency: disclosing the role of mevalonate pathway modulation in inflammation.

    No full text
    Inflammation is a highly regulated process involved both in the response to pathogens as well as in tissue homeostasis. In recent years, a complex network of proteins in charge of inflammation control has been revealed by the study of hereditary periodic fever syndromes. Most of these proteins belong to few families and share the capability of sensing pathogen-associated and damage-associated molecular patterns. By interacting with each other, these proteins participate in the assembling of molecular platforms, called inflammasomes, which ultimately lead to the activation of cytokines, to the transcription of inflammatory gene or to the induction of cell apoptosis. Among hereditary periodic fever syndromes, mevalonate kinase deficiency (MKD) is the sole in which the phenotype did not directly associate with a deficiency of these proteins, but with a metabolic defect of the mevalonate pathway, highlighting the importance of this metabolic pathway in the inflammation control. Noteworthy, drugs acting on this pathway can greatly influence the inflammatory response. The modulation of inflammation by mevalonate pathway is of interest, since it may involve mechanisms not directly referable to inflammasomes. MKD provides a robust model to study these mechanisms and possibly to develop new classes of anti-inflammatory drugs

    Serum TRAIL levels increase shortly after insulin therapy and metabolic stabilization in children with type 1 diabetes mellitus

    No full text
    TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily, which plays an important role in regulating cell death and inflammation. Beyond its anti-tumor activity, increasing evidence in animal studies suggests that TRAIL plays a role in the control of autoimmune diseases, and in particular in type 1 diabetes mellitus (T1DM) . In this context, in a previous study carried out in a retrospective cohort of T1DM pediatric patients, we found significant lower levels of circulating TRAIL in T1DM patients with respect to healthy age-matched controls . However, a limitation of our previous study was as follows: (1) the lack of serial serum samples harvested from the same patients at different time post onset and (2) the lack of information about concurrent metabolic status at time of blood sampling. On these bases, the aim of the present study was to analyze the evolution of circulating TRAIL levels in a pilot group of pediatric patients admitted at Emergency Department for T1DM, from the time of hospital admission throughout the re-establishment of a normal metabolic balance and up to 18 months of clinical follow-up. Moreover, the serum levels of TRAIL in T1DM patients were analyzed in relation to the metabolic status determined at the same times

    Mevalonate kinase deficiency: Disclosing the role of mevalonate pathway modulation in inflammation

    No full text
    Inflammation is a highly regulated process involved both in the response to pathogens as well as in tissue homeostasis. In recent years, a complex network of proteins in charge of inflammation control has been revealed by the study of hereditary periodic fever syndromes. Most of these proteins belong to a few families and share the capability of sensing pathogen-associated and damage-associated molecular patterns. By interacting with each other, these proteins participate in the assembly of molecular platforms, called inflammasomes, which ultimately lead to the activation of cytokines, to the transcription of inflammatory genes or to the induction of cell apoptosis. Among hereditary periodic fever syndromes, mevalonate kinase deficiency (MKD) is the sole in which the phenotype did not directly associate with a deficiency of these proteins, but with a metabolic defect of the mevalonate pathway, highlighting the importance of this metabolic pathway in the inflammation control. Noteworthy, drugs acting on this pathway can greatly influence the inflammatory response. The modulation of inflammation by mevalonate pathway is of interest, since it may involve mechanisms not directly referable to inflammasomes. MKD provides a model to study these mechanisms and possibly to develop new classes of anti-inflammatory drugs
    corecore