187 research outputs found
Análisis del impacto de la actividad repobladora en la estadística del desempleo, durante el periodo de tiempo entre 1946 y 1961, en varias provincias españolas
Con el objetivo de analitzar el impacto que tuvo la política repobladora en el paro rural se analizan para cada una de las províncias españolas la evoluación de la tasa de desempleo agrícola i forestal y la actividad repobladora durante el perido de 1946-62. En este análisi descriptivo previo, no se han econtrado evidencias claras de esta relación si bien en algunas provincias el efecto repoblador sobre el desempleo parece reflejarse
NMR line shapes of a gas of nuclear spin-1/2 molecules in fluctuating nano-containers
Reported in this paper is the impact of the fluctuations of the geometry of
the nano-meter gas containers in the medium on the NMR line shape of the gas
inside of the nano-containers. We calculate exactly the NMR line shape of the
gas of spin-1/2 carrying molecules for two typical dynamics of the
nano-container volume and the orientation with respect to the external magnetic
field: (i) for a Gaussian stochastic dynamics, and (ii) for the regular
harmonic vibrations. For the Gaussian ensemble of static disordered containers
having an infinite correlation time, , the overall
line shape is shown to obey a logarithmic low frequency asymptotics, , at , and
exponentially decaying asymptotics in a high frequency domain. For the Gaussian
ensemble of the rapidly fluctuating containers of a finite , the
overall line shape has a bell-shaped profile with far wing
behaviour. In addition, we calculate exactly a satellite structure of the NMR
line shape when the nano-bubbles in a liquid are affected by the harmonic
deformations due to the acoustic waves.Comment: 14 pages, 4 figure
Non-Ergodic Nuclear Depolarization in Nano-Cavities
Recently, it has been observed that the effective dipolar interactions
between nuclear spins of spin-carrying molecules of a gas in a closed
nano-cavities are independent of the spacing between all spins. We derive exact
time-dependent polarization for all spins in spin-1/2 ensemble with spatially
independent effective dipolar interactions. If the initial polarization is on a
single (first) spin, then the exact spin dynamics of the model is
shown to exhibit a periodical short pulses of the polarization of the first
spin, the effect being typical of the systems having a large number, , of
spins. If , then within the period () for odd (even)
-spin clusters, with standing for spin coupling, the polarization of
spin 1 switches quickly from unity to the time independent value, 1/3, over the
time interval about , thus, almost all the time, the spin 1
spends in the time independent condition . The period and the
width of the pulses determine the volume and the form-factor of the ellipsoidal
cavity. The formalism is adopted to the case of time varying nano-fluctuations
of the volume of the cavitation nano-bubbles. If the volume is varied by
the Gaussian-in-time random noise then the envelope of the polarization peaks
goes irreversibly to 1/3. The polarization dynamics of the single spin exhibits
the Gaussian (or exponential) time dependence when the correlation time of the
fluctuations of the nano-volume is larger (or smaller) than the , where the is the variance of the
coupling. Finally, we report the exact calculations of the NMR line shape for
the -spin gaseous aggregate.Comment: 26 pages, 3 figure
Recommended from our members
Illustrating the effect of viscoelastic additives on cavitation and turbulence with X-ray imaging
The effect of viscoelastic additives on the topology and dynamics of the two-phase flow arising within an axisymmetric orifice with a flow path constriction along its main axis has been investigated employing high-flux synchrotron radiation. X-ray Phase Contrast Imaging (XPCI) has been conducted to visualise the cavitating flow of different types of diesel fuel within the orifice. An additised blend containing Quaternary Ammonium Salt (QAS) additives with a concentration of 500 ppm has been comparatively examined against a pure (base) diesel compound. A high-flux, 12 keV X-ray beam has been utilised to obtain time resolved radiographs depicting the vapour extent within the orifice from two views (side and top) with reference to its main axis. Different test cases have been examined for both fuel types and for a range of flow conditions characterised by Reynolds number of 35500 and cavitation numbers (CN) lying in the range 3.0–7.7. It has been established that the behaviour of viscoelastic micelles in the regions of shear flow is not consistent depending on the cavitation regimes encountered. Namely, viscoelastic effects enhance vortical (string) cavitation, whereas hinder cloud cavitation. Furthermore, the use of additised fuel has been demonstrated to suppress the level of turbulence within the orifice
Modulation of the secondary Bjerknes force in multi-bubble systems
The behaviours of insonated bubble clusters are regulated by the secondary Bjerknes force between bubble pairs. While the force has been investigated extensively for two-bubble systems, the modulation of the force by nearby bubbles remains unclear. This problem is investigated in this paper by theoretical analyses and numerical simulations of a three bubble system. For weak oscillations, the third bubble is found to have strong effects when its radius is close to the resonant radius. The equilibrium distance between the bubble pair is reduced when the radius of the third bubble is smaller than the resonant threshold, and increased when it is larger. For strong oscillations of bubbles with radii of a few microns, the third bubble reduces the magnitude of the force, hence increasing the equilibrium distance. The modulation effects depend strongly on the relative sizes of the bubbles. Stronger effects can be produced when the third bubble is placed closer to the smaller bubble in the bubble pair. The findings highlight the need for a more accurate parametrization of the secondary Bjerknes force in the simulation and manipulation of bubble clusters
Evaluation of Cavitation Erosion Behavior of Commercial Steel Grades Used in the Design of Fluid Machinery
The erosion response under cavitation of different steel grades was assessed by studying the erosion rate, the volume removal, the roughness evolution, and the accumulated strain energy. A 20 kHz ltrasonic transducer with a probe diameter of 5 mm and peak-to-peak amplitude of 50 lm was deployed in distilled water to induce damage on the surface of commercial chromium and carbon steel samples. After a relatively short incubation period, cavitation induced the formation of pits, cracks, and craters whose features strongly depended on the hardness and composition of the tested steel. AISI 52100 chromium steel showed the best performance and is, therefore, a promising design candidate for replacing the existing fluid machinery materials that operate within potential cavitating environments
- …