628 research outputs found

    National accounting rules in a globalized world (Pro and contra) ; contra - the best of both worlds

    Get PDF
    Grundsätze ordnungsmäßiger Buchführung, Bilanztheorie, Globalisierung, GAAP (Generally Accepted Accounting Principles), Accounting theory, Globalization

    Mislocalization of the E3 Ligase, beta-Transducin Repeat-containing Protein 1 (beta-TrCP1), in Glioblastoma Uncouples Negative Feedback between the Pleckstrin Homology Domain Leucine-rich Repeat Protein Phosphatase 1 (PHLPP1) and Akt

    Get PDF
    The PH domain leucine-rich repeat protein phosphatase, PHLPP, plays a central role in controlling the amplitude of growth factor signaling by directly dephosphorylating and thereby inactivating Akt. The cellular levels of PHLPP1 have recently been shown to be enhanced by its substrate, activated Akt, via modulation of a phosphodegron recognized by the E3 ligase β-TrCP1, thus providing a negative feedback loop to tightly control cellular Akt output. Here we show that this feedback loop is lost in aggressive glioblastoma but not less aggressive astrocytoma. Overexpression and pharmacological studies reveal that loss of the feedback loop does not result from a defect in PHLPP1 protein or in the upstream kinases that control its phosphodegron. Rather, the defect arises from altered localization of β-TrCP1; in astrocytoma cell lines and in normal brain tissue the E3 ligase is predominantly cytoplasmic, whereas in glioblastoma cell lines and patient-derived tumor neurospheres, the E3 ligase is confined to the nucleus and thus spatially separated from PHLPP1, which is cytoplasmic. Restoring the localization of β-TrCP1 to the cytosol of glioblastoma cells rescues the ability of Akt to regulate PHLPP1 stability. Additionally, we show that the degradation of another β-TrCP1 substrate, β-catenin, is impaired and accumulates in the cytosol of glioblastoma cell lines. Our findings reveal that the cellular localization of β-TrCP1 is altered in glioblastoma, resulting in dysregulation of PHLPP1 and other substrates such as β-catenin

    Pleckstrin homology domain leucine-rich repeat protein phosphatases set the amplitude of receptor tyrosine kinase output

    Get PDF
    Growth factor receptor levels are aberrantly high in diverse cancers, driving the proliferation and survival of tumor cells. Understanding the molecular basis for this aberrant elevation has profound clinical implications. Here we show that the pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP) suppresses receptor tyrosine kinase (RTK) signaling output by a previously unidentified epigenetic mechanism unrelated to its previously described function as the hydrophobic motif phosphatase for the protein kinase AKT, protein kinase C, and S6 kinase. Specifically, we show that nuclear-localized PHLPP suppresses histone phosphorylation and acetylation, in turn suppressing the transcription of diverse growth factor receptors, including the EGF receptor. These data uncover a much broader role for PHLPP in regulation of growth factor signaling beyond its direct inactivation of AKT: By suppressing RTK levels, PHLPP dampens the downstream signaling output of two major oncogenic pathways, the PI3 kinase/AKT and the Rat sarcoma (RAS)/ERK pathways. Our data are consistent with a model in which PHLPP modifies the histone code to control the transcription of RTKs

    PPM1H phosphatase counteracts LRRK2 signaling by selectively dephosphorylating Rab proteins

    Get PDF
    Mutations that activate LRRK2 protein kinase cause Parkinson's disease. LRRK2 phosphorylates a subset of Rab GTPases within their Switch-II motif controlling interaction with effectors. An siRNA screen of all human protein phosphatases revealed that a poorly studied protein phosphatase, PPM1H, counteracts LRRK2 signaling by specifically dephosphorylating Rab proteins. PPM1H knockout increased endogenous Rab phosphorylation and inhibited Rab dephosphorylation in human A549 cells. Overexpression of PPM1H suppressed LRRK2-mediated Rab phosphorylation. PPM1H also efficiently and directly dephosphorylated Rab8A in biochemical studies. A "substrate-trapping" PPM1H mutant (Asp288Ala) binds with high affinity to endogenous, LRRK2-phosphorylated Rab proteins, thereby blocking dephosphorylation seen upon addition of LRRK2 inhibitors. PPM1H is localized to the Golgi and its knockdown suppresses primary cilia formation, similar to pathogenic LRRK2. Thus, PPM1H acts as a key modulator of LRRK2 signaling by controlling dephosphorylation of Rab proteins. PPM1H activity enhancers could offer a new therapeutic approach to prevent or treat Parkinson's disease.</p

    Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution

    Get PDF
    BACKGROUND: The functional consequences of whole genome duplications in vertebrate evolution are not fully understood. It remains unclear, for instance, why paralogues were retained in some gene families but extensively lost in others. Cdx homeobox genes encode conserved transcription factors controlling posterior development across diverse bilaterians. These genes are part of the ParaHox gene cluster. Multiple Cdx copies were retained after genome duplication, raising questions about how functional divergence, overlap, and redundancy respectively contributed to their retention and evolutionary fate. RESULTS: We examined the degree of regulatory and functional overlap between the three vertebrate Cdx genes using single and triple morpholino knock-down in Xenopus tropicalis followed by RNA-seq. We found that one paralogue, Cdx4, has a much stronger effect on gene expression than the others, including a strong regulatory effect on FGF and Wnt genes. Functional annotation revealed distinct and overlapping roles and subtly different temporal windows of action for each gene. The data also reveal a colinear-like effect of Cdx genes on Hox genes, with repression of Hox paralogy groups 1 and 2, and activation increasing from Hox group 5 to 11. We also highlight cases in which duplicated genes regulate distinct paralogous targets revealing pathway elaboration after whole genome duplication. CONCLUSIONS: Despite shared core pathways, Cdx paralogues have acquired distinct regulatory roles during development. This implies that the degree of functional overlap between paralogues is relatively low and that gene expression pattern alone should be used with caution when investigating the functional evolution of duplicated genes. We therefore suggest that developmental programmes were extensively rewired after whole genome duplication in the early evolution of vertebrates

    Druggable Drivers of Lung Cancer

    Full text link

    Using large-scale genomics data to identify driver mutations in lung cancer: methods and challenges

    Get PDF
    Lung cancer is the commonest cause of cancer death in the world and carries a poor prognosis for most patients. While precision targeting of mutated proteins has given some successes for never- and light-smoking patients, there are no proven targeted therapies for the majority of smokers with the disease. Despite sequencing hundreds of lung cancers, known driver mutations are lacking for a majority of tumors. Distinguishing driver mutations from inconsequential passenger mutations in a given lung tumor is extremely challenging due to the high mutational burden of smoking-related cancers. Here we discuss the methods employed to identify driver mutations from these large datasets. We examine different approaches based on bioinformatics, in silico structural modeling and biological dependency screens and discuss the limitations of these approaches

    Molecular Dissection of AKT Activation in Lung Cancer Cell Lines

    Full text link

    The SRC family kinase inhibitor NXP900 demonstrates potent anti-tumor activity in squamous cell carcinomas

    Get PDF
    NXP900 is a selective and potent SRC family kinase (SFK) inhibitor, currently being dosed in a phase 1 clinical trial, that locks SRC in the “closed” conformation, thereby inhibiting both kinase-dependent catalytic activity and kinase-independent functions. In contrast, several multi-targeted kinase inhibitors that inhibit SRC, including dasatinib and bosutinib, bind their target in the active “open” conformation, allowing SRC and other SFKs to act as a scaffold to promote tumorigenesis through non-catalytic functions. NXP900 exhibits a unique target selectivity profile with sub-nanomolar activity against SFK members over other kinases. This results in highly potent and specific SFK pathway inhibition. Here, we demonstrate that esophageal squamous cell carcinomas (ESCC) and head and neck squamous cell carcinomas (HNSCC) are exquisitely sensitive to NXP900 treatment in cell culture and in vivo, and we identify apatient population that could benefit from treatment with NXP900
    corecore