
Pharmacogenomics (Epub ahead of print) ISSN 1462-2416

part of

PharmacogenomicsReview

10.2217/PGS.15.60  © Andrew M Hudson

Pharmacogenomics

Review 2015/07/30
16

10

2015

Lung cancer is the commonest cause of cancer death in the world and carries a poor 
prognosis for most patients. While precision targeting of mutated proteins has given 
some successes for never- and light-smoking patients, there are no proven targeted 
therapies for the majority of smokers with the disease. Despite sequencing hundreds 
of lung cancers, known driver mutations are lacking for a majority of tumors. 
Distinguishing driver mutations from inconsequential passenger mutations in a given 
lung tumor is extremely challenging due to the high mutational burden of smoking-
related cancers. Here we discuss the methods employed to identify driver mutations 
from these large datasets. We examine different approaches based on bioinformatics, 
in silico structural modeling and biological dependency screens and discuss the 
limitations of these approaches.
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Lung cancer is the most common cause of 
cancer death in the world; only 16.8% of 
patients survive to 5 years following a diag-
nosis of lung cancer [1]. This is in stark con-
trast to prostate cancer (98.9% surviving to 
5 years) and breast cancer (89.2% surviving 
to 5 years). A major reason for this dispar-
ity is that metastatic disease is diagnosed at 
presentation in the majority of lung cancer 
cases. In addition, the median age of lung 
cancer diagnosis is around 70 years, and 
patients have often smoked for a large period 
of their life, making successful treatment of 
lung cancer patients extremely challenging. 
As a consequence of smoking, many patients 
possess severe co-existing medical conditions 
that preclude them from receiving potentially 
toxic chemotherapeutic regimens. These 
patients cannot receive an active anticancer 
treatment and are only eligible for symptom-
atic palliation. Further, while some patients 
will benefit from palliative chemotherapy to 
extend survival, this is often short-lived and 
accompanied by toxic side effects. There-
fore, the promise offered by targeted thera-

pies, with their better-tolerated side effects, 
is of particular significance for lung cancer 
patients.

Most clinically effective targeted thera-
pies rely on disruption of ‘oncogene addic-
tion’ that occurs through genetic mutation 
or overexpression of genes conferring tumori-
genic properties in line with the hallmarks of 
cancer [2,3]. The success of targeted precision 
therapies lies in identifying mutated genes 
that confer a growth or survival advantage 
(driver mutations) that can be subsequently 
targeted therapeutically. There have been 
some notable successes with this approach. 
EGF receptor (EGFR) inhibitors were first 
introduced into the clinic for the treatment 
of non small-cell lung cancer (NSCLC). The 
IPASS study compared the EGFR inhibitor 
gefitinib with a standard doublet chemo-
therapy regimen in patients from East Asia 
with first-line advanced lung adenocarci-
noma [4]. It showed superior progression-
free survival (PFS) in the gefitinib arm as 
well as lower rates of severe toxicity. While 
the study did not stratify treatment based on 
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EGFR mutation status, subgroup analysis showed that 
EGFR mutation positive patients had longer PFS with 
gefitinib while EGFR mutation negative patients had 
longer PFS with standard chemotherapy. The study 
population, consisting of East Asian never or light-
smokers, was enriched for EGFR mutations (59.7%) 
compared with the heavy smoking population that 
forms the majority of Western lung adenocarcinoma 
cases (11% with EGFR mutation) [5]. Subsequent trials 
of gefitinib, erlotinib and afatinib have demonstrated 
superior PFS in EGFR mutation positive patients 
when compared with standard chemotherapy leading 
to these agents being routinely used for treatment in 
EGFR mutation positive patients [6–9]. More recently, 
ALK  rearrangements have been identified in approxi-
mately 5% of NSCLC [10]. Again patients with ALK 
rearrangements are more likely to be never/light smok-
ers [11]. Crizotinib, a small-molecule inhibitor of ALK 
(as well as MET and ROS1 kinases), has been shown 
to offer improved PFS, lower toxicity and better qual-
ity of life compared with standard chemotherapy [12].

Other known oncogenes have been discovered to 
be mutated in a proportion of NSCLC cases and are 
currently being assessed in early phase clinical trials. 
The most commonly mutated gene is KRAS (approxi-
mately 25% depending on histology and more fre-
quent in heavy smokers) [13]. KRAS itself is not easily 
targetable and clinical trials have been developed using 
MEK inhibitors in combination with chemotherapy to 
block the downstream effects of oncogenic KRAS [14]. 
This approach has seen some encouraging responses in 
KRAS mutation positive patients but phase 3 data are 
awaited and MEK inhibition on its own may not be 
sufficient in these patients given the multiple down-
stream effectors of KRAS. An additional downstream 
target of GOF mutant KRAS is PI3K (phosphoinos-
otide 3-kinase), where activation of PI3K leads to PIP3 
(phosphoinosotide (3,4,5)-trisphosphate) mediated 
AKT activation to promote cancer cell survival [15]. 
It would be expected that combination PI3K/MEK 
inhibitor therapy would promote tumor regression, 
however KRAS mutation positive colon cancer PDX 
models failed to demonstrate tumor regression high-
lighting the challenges in treating KRAS mutation 
positive cancers [16]. BRAF is mutated in approxi-
mately 3% of patients (with half of cases being the 
V600E mutation that have been targeted to much 
success in melanoma) and early phase trials are tak-
ing place with BRAF inhibitors [17]. However, the poor 
clinical response to V600E BRAF inhibition due to 
EGFR activation in colorectal tumors adds caution to 
any predictions of efficacy in lung cancer [18]. HER2 
amplification and activating mutations are seen in 
a proportion of NSCLC but clinical targeting with 

trastuzumab and lapatnib have not shown the efficacy 
seen in HER2 amplified breast cancer patients [19,20]. 
Other genetic alterations such as MET amplifications 
(8–10%), RET rearrangements (1–2%) and gain-of-
function mutations in PIK3CA/AKT (2–5%) are 
being targeted in early phase clinical trials [21].

A biomarker-based precision medicine trial (known 
as the BATTLE trial) used tumor biopsies to stratify 
lung cancer patients into different treatment arms 
based on up-to-date mutational profiling, demonstrat-
ing early disease control for certain biomarker–drug 
combinations and highlighting that this approach is 
feasible [22]. However, response rates were poor due to a 
heavily pretreated patient population combined with a 
lack of identifiable driver mutations and inhibitors for 
treatment. Overwhelmingly the most important factor 
in preventing this personalized approach for lung can-
cer is the lack of identifiable driver mutations. It was 
recently estimated that at least three driver mutations 
are required for the development of lung cancers [23]. 
However, despite the whole exome sequencing of hun-
dreds of lung cancer samples, approximately 50% of 
NSCLC have no identifiable activating mutations [24]. 
In this review we shall discuss the different approaches 
and challenges to mining cancer genomics data to 
 discover druggable driver mutations in lung cancer.

Online aggregated cancer genomics data
To enhance driver mutation discovery, large reposi-
tories of cancer genomics data have been published 
online. Aggregating the data from large numbers of 
sequenced cancers will aid in the discovery of com-
monly mutated genes for specific cancer subtypes. cBio 
is one of the most widely used databases, combining 
data from The Cancer Genome Atlas (TCGA) samples 
with other large studies including The Cancer Cell 
Line Encyclopedia (CCLE) [25,26]. Users can search 
by gene name to retrieve the frequency of mutation in 
different cancer subtypes and identify novel targets to 
evaluate further. The most straightforward approach 
is to seek genes that are commonly mutated in a large 
proportion of cancers so that effective and financially 
viable drug development can be undertaken for that 
target. However, this approach requires a strategy to 
distinguish somatic mutations that drive the oncogenic 
process (driver mutations) from somatic mutations 
that do not have a functional effect on the cell (passen-
ger mutations) [27]. In lung cancer, this is particularly 
challenging. Tobacco smoke contains a multitude of 
powerful carcinogens that form DNA adducts result-
ing in much higher mutational rates than a majority 
of other cancers [28,29]. The high mutational burden 
that yields large numbers of passenger mutations make 
it difficult to identify the driver mutations amongst 
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this background of numerous inconsequential muta-
tions [30]. At the time of writing, the average number 
of protein coding mutations identified in lung squa-
mous and lung adenocarcinoma TCGA samples was 
319 and 280, respectively. This is 11–13-times greater 
than acute myeloid leukemia (AML), for which only 
24 protein-coding mutations were reported per sample. 
In AML, the relatively low mutation burden has aided 
the discovery of more drivers. A study of 200 AML 
samples, for example, found that 99.5% possessed a 
nonsynonymous somatic mutation in a gene of bio-
logical significance [31,32]. This is in marked contrast 
to NSCLC in which only approximately 50% of cases 
have a known activating mutational driver [24].

Given the relative failure to identify many common 
mutations in lung cancer it is likely that unknown 
cases are characterized by small groups of drivers, 
each accounting for 1–2% of the total. These drivers, 
affecting only a small proportion of patients can still be 
beneficial to pursue. This was evident in an expanded 
Phase 1 study of crizotinib, in which some patients 
with ROS1 rearrangements (only 1–2% of NSCLC 
patients) had dramatic responses to the drug with an 
overall longer median progression free survival than 
EML4-ALK patients receiving the same drug [33,34]. 
Given the high incidence of lung cancer, these targets 
that involve 1–2% of cases, represent a large global 
patient cohort.

Playing the numbers game
While cancer genomics data can be interrogated for 
genes with frequent mutations that segment according 
to histological type, it is not sufficient to assess statisti-
cal significance on the assumption that mutation rates 
for all genes are the same. Instead, more sophisticated 
models consider additional factors: first, gene-level 
mutation rates may be normalized according to length 
because when assuming a uniform background muta-
tion rate, longer genes are more likely to acquire a muta-
tion than shorter ones. Therefore, extremely long genes 
such as TTN have a high mutational frequency (52% 
in lung squamous TCGA data). Table 1A lists the top 
20 most frequently mutated genes in squamous lung 
cancer. Seven of these encode proteins in the top 20 
longest proteins. The median protein length for the top 
20 mutated is 4612 amino acids (mean for all proteins 
screened = 699 amino acids). While this effect is noted, 
it does not mean that very large proteins do not play a 
role in oncogenesis and indeed some propose that genes 
such as TTN may be an important driver of tumor 
progression [35]. The length of these proteins obviously 
makes subsequent biological work more challenging and 
researchers may shy away from the associated technical 
challenges in search of lower hanging fruit.

Second, another issue that is particularly apparent 
in samples with a high mutation burden is that many 
mutations occur in genes that are not expressed as 
proteins in the given tumor. This is caused, at least in 
part by the differential effect of transcription-coupled 
repair; genes that are not expressed are less likely to 
be repaired and therefore mutations at these loci 
accumulate [36,37]. Following length correction the 
top 20 mutated genes (Table 1B) now contain a num-
ber of genes, such as olfactory receptors, that are not 
expressed in squamous lung cancer, and are unlikely to 
have a functional effect. The length corrected top 20 
also contain very small proteins with a small number of 
incidental mutations as well as larger proteins with bio-
logical evidence of significance in lung cancer [38,39].

Third, replication timing is also important, since 
genes that replicate late will have a depleted pool of 
nucleotides available, and are therefore more likely to 
acquire mutations [36]. This phenomenon has been 
used to explain increased germline variability and 
somatic mutations in late-replicating regions [36,40,41]. 
This knowledge may help to explain the high density 
of mutations in a specific locus, but, as with issues of 
gene length, it does not rule out the possibility that 
a late-replication gene might play a significant role 
in cancer. Replication timing and expression have 
been used to develop the MutSigCV platform to bet-
ter identify driver mutations using estimations of the 
background mutation rates in different cancer types 
using silent and noncoding mutations in a genetic 
region [36]. However, it is acknowledged that larger 
amounts of next generation sequencing is required to 
get a better picture of local mutation rates and improve 
the method.

Fourth, intratumoral mutation heterogeneity in 
NSCLC primary tumors has been demonstrated in 
two studies [42,43]. Zhang et al. showed that 76% of 
mutations were identified in all regions of individual 
tumors (including 20 out of 21 known cancer gene 
mutations) suggesting that analysis of primary tumor 
genomes will capture most driver mutations. However, 
it is not known if metastatic lesions that make up a 
large proportion of clinical presentations and have the 
most to gain from targeted systemic treatments, share 
this degree of homogeneity. While the TCGA dataset is 
comprised of primary tumors, cell lines are frequently 
derived from metastatic tissue; these differences need 
to be considered when pursuing candidate mutations 
in experimental systems based on tumor-derived cell 
lines. It is also important to consider whether previ-
ous lines of therapy have led to the selection of spe-
cific genetic clones. The fact that the primary tumors 
in Zhang et al. had especially good concordance for 
known cancer causing mutations suggests that select-
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ing mutations with high allele frequency (reported in 
TCGA data) may be a beneficial strategy. However, 
uncertainties about the sampling and proportion of 
normal tissue contamination make this difficult.

Fifth, discrepancies between NGS datasets of the same 
samples highlight further challenges and opportunities 
with large-scale genomics data. Two prominent cancer 
genomics institutes (The Broad Institute [CCLE] and 
The Sanger Institute [COSMIC]) have published NGS 
data of commercially available cancer cell lines [26,44]. 
This work has been extremely beneficial to researchers 
around the world who have been able to use the data to 
select relevant cell lines in which to test their hypoth-
eses. We had observed some inconsistencies between the 
two datasets, leading us to perform a formal comparison 
of the missense mutations reported by the two different 
institutes [45]. We demonstrated marked discrepancies 
between the datasets with only 57% of the mutations 
reported across 568 cell lines being concordant. We 
found that one of the major reasons for this discordance 
was that GC-rich areas of the exome are still proving 
difficult to sequence by NGS, leading to over 400 sig-

nificant areas of poor sequencing (cold-spots) in known 
cancer causing genes and kinases. A conservative esti-
mate suggested that approximately three missense muta-
tions occurring within known cancer census and kinase 
genes were being missed in each cell line (with many 
other mutations being missed at other loci). TCGA data 
are generally of a similar age and obtained with similar 
technologies, suggesting that these data may also suffer 
from cold-spots. GC-rich cold spots are more relevant in 
cancers, such as lung cancers, where mutations occur-
ring more frequently in guanine nucleotides. It is likely, 
therefore, that mutations in genes with GC rich regions 
are under-reported in lung cancer, and suggests that 
these loci harbor additional common mutations that 
have yet to be identified.

Sixth, another source of disparity between the data-
sets we studied was poor consensus in the labeling of 
variants as either germline or somatic. The majority of 
cell lines do not have paired normal tissue for compari-
son, and therefore the somatic status of an observed vari-
ant was performed by matching to databases of known 
germline variants. The most common method employed 

Table 1A. Top 20 frequently mutated genes in squamous lung cancer with number of mutated cases 
and longest corresponding protein length. 

Gene Number mutated cases  
(out of 178 cases)

Longest protein length (amino 
acids)

TTN 92 35991

CSMD3 55 3707

RYR2 53 4967

ZFHX4 53 3616

MUC16 51 14507

LRP1B 48 4599

USH2A 43 5202

SYNE1 35 8797

RYR3 34 4873

FLG 31 4061

DNAH5 29 4624

PKHD1 29 4074

MUC17 29 4493

MUC5B 28 5762

AHNAK2 28 5795

SI 28 1827

FAM135B 28 1406

KMT2D 27 5537

HCN1 27 890

CSMD1 27 3565

Seven of these top 20 mutated genes encode proteins in the top 20 longest proteins in the TCGA dataset.  
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Table 1B. Top 20 frequently mutated genes in squamous lung cancer normalized for length of longest protein and 
ranked by length corrected score. 

Gene Length corrected 
score

Longest protein length 
(amino acids)

Number of 
mutations

Comments

CDKN2A 0.152941176 170 26 Evidence of role in lung cancer [38]

REG3A 0.057142857 175 10  

REG1B 0.054216867 166 9  

REG1A 0.054216867 166 9  

KRTAP19–3 0.049382716 81 4 Hair cortex – keratin-associated protein

COX7B2 0.049382716 81 4  

OR5D18 0.044728435 313 14 Olfactory receptor

SST 0.043103448 116 5  

SPANXN1 0.041666667 72 3 Sperm protein associated with the nucleus

OR2T4 0.040229885 348 14 Olfactory receptor

REG3G 0.04 175 7  

OR6F1 0.035714286 308 11 Olfactory receptor

OR5L2 0.035369775 311 11 Olfactory receptor

MANBAL 0.035294118 85 3  

PRAC1 0.035087719 57 2  

NFE2L2 0.033057851 605 20 Evidence of role in lung cancer [39]

LENEP 0.032786885 61 2  

TPTE 0.032667877 551 18  

STATH 0.032258065 62 2  

SLN 0.032258065 31 1  

Proteins previously demonstrated to play a role in lung cancer feature in the list (CDKN2A, NFE2L2) as well as proteins such as olfactory receptors that are unlikely to 
be expressed in lung cancer and are therefore less likely to undergo transcription coupled repair of somatic mutations. The length correction means that very small 
proteins with a small number of incidental mutations are also represented. 

simply removes all variants with an ‘rs’ oasis: entry in the 
dbSNP database [46]. Unfortunately, dbSNP database 
is rapidly evolving and expanding, with the side effect 
that the date at which the filtering was performed can 
greatly affect the final output. Further, database submis-
sion is unrestricted leading to the occasional inclusion 
of a somatic mutation in error. Finally, high GC content 
can also lead to underreporting of germline variants in 
hard-to-sequence loci as well as bona fide mutations. As 
NGS technology improves, common germline SNPs in 
these regions can be uncovered, but since earlier germ-
line sequencing approaches failed to identify them, 
they are not filtered against dbSNP leading them to be 
e rroneously reported as rare or somatic.

From numbers to predictions: in silico 
analysis of mutations
Another method used to distinguish between driver 
and passenger mutations is to consider the structural 
impact of the resultant amino acid substitution. Tools 

such as mutationassessor.org, Polyphen2, Provean and 
SIFT are freely available online, and use information 
such as protein structure and sequence homology to 
predict whether a mutation might have a functional 
impact [47–50]. They can be used to quickly analyze 
large batches of genomics data to allow researchers to 
assess whole exome data to select those mutations most 
likely to alter the function of the protein. A recent eval-
uation of these different tools demonstrated that they 
worked well to distinguish known pathogenic muta-
tions from neutral ones, and that predictive power 
could be further enhanced by combining the outputs 
from multiple tools [51]. From our experience, loss-of-
function mutations (with their presumed greater struc-
tural disruption) are more likely to be identified than 
some more subtle activating oncogenes using these 
methods [52]. Additional complexity arises because 
the majority of human protein-coding genes express 
more than one isoform, with the result that a missense 
mutation can have different effects according to the 
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isoform it occurs in, and may not be present at all if 
it occurs in a spliced exon. Furthermore, proper inter-
pretation of the data is difficult without access to pro-
tein expression data, since highly functional mutations 
will clearly not have an effect if that protein or mutant 
allele is not expressed. One useful source for these data 
is the Human Protein Atlas, which provides a valu-
able online resource in which immunohistochemistry 
data are used to catalogue the expression of proteins in 
d ifferent cancer types [53].

The challenge of identifying driver mutations is well 
summarized by Tamborero and colleagues, who state 
that ‘The elucidation of cancer drivers relies on identify-
ing the marks of positive selection that occur during the 
clonal evolution of tumors’ [54]. These positive marks 
present themselves in various ways, from the clustering 
of mutations in a specific protein domain to the corre-
lation of a mutated gene with a specific sub-phenotype 
present within the patient. Therefore state-of-the-art 
attempts at driver mutation identification combine a 
wide breadth of different data to identify the marks of 
positive selection. One such package is ‘MuSiC’ which 
combines statistical tests of mutational frequency and 
co-occurrence, clinical data, and information pertain-
ing to the frequency of mutations in specific protein 
domains [55]. Identifying mutations clustered at spe-
cific loci (whether using a focused approach based 
on known protein domain function or just identify-
ing mutations in close proximity to another) can 
highlight potential mechanisms of positive selection. 
Another analysis focused on mutations only occurring 
in phosphosites of proteins to extract novel targets [56]. 
Increasing understanding of protein domain function, 
from wet-lab studies, will provide further opportuni-
ties to create functionally relevant screens.

Correlating mutational data with copy number 
deletions, immunohistochemistry, and considering 
the frequency of truncating mutations may assist in 
the prediction of loss-of-function mutations. However 
these cannot be solely relied upon given the effects of 
co-existing mutations and expression causing varying 
redundancy and unknowns regarding the presence or 
absence of a dominant negative effect [57].

If greater computational resources are available, 
molecular dynamic (MD) simulations can provide 
more in depth in silico approaches with which to assess 
the effect of a given mutation. MD simulations model 
the movement of a protein over very short times scales 
(generally in the nanosecond range), making it pos-
sible to predict the structural variations that occur as a 
consequence of a mutation.

Initial MD simulations are kept relatively short, 
simulating up to 50 ns of time, due to the large com-
putational burden required for such simulations. 

These typically focus on biochemically significant 
mutations that have either been published previ-
ously [58,59] or are analyzed in vitro/in vivo within the 
study itself [60,61]. These short simulations are gen-
erally utilized to confirm biochemical data and gain 
further understanding of the structural consequences 
of the identified mutation. As these simulations are 
only short, the information gained can range from 
as little as the position of the mutations in relation of 
other regions of the protein [60] and movement of key 
regions of the structure [61] up to changes in binding 
affinities of key substrates [59]. All of this informa-
tion can help to understand the potential impact the 
mutation is having on the protein in question.

More information can be gleaned from longer MD 
simulation studies. Many longer simulations focus 
on the alteration of key structural features (e.g., salt 
bridges, domain or feature orientation and drug bind-
ing) and how these affect the free energy landscape of 
the protein [62–65]. These types of studies have provided 
information on the progression of these proteins into 
more active conformations following disease caus-
ing mutations [64,66] as well as critical information on 
the effect of mutations on drug resistance [65,66]. Such 
information is critical to understanding the structural 
effects occurring following mutation and providing the 
research community with this type of analysis could 
aid in drug development. However, in order to per-
form these MD simulations, a crystal structure of the 
protein is required. Furthermore, these more complex 
in silico methods require both a high level of computa-
tional knowledge and a large computational resource.

Genetic dependency screens
’Oncogene addiction’ describes a phenomenon whereby 
cancer cells develop a dependency on a specific onco-
gene that has become either overexpressed or activated 
by mutation during the development of the cancer. 
This dependency leaves the cancer vulnerable should 
the activated oncogene be inhibited or suppressed. A 
number of mechanisms have been proposed to explain 
how dependency on a single oncogene occurs in tumors 
with a high burden of genetic mutations [67]. This 
dependency creates a desirable differential between 
the normal and cancer cell that can be exploited and 
targeted for therapeutic intervention. Most clinically 
valuable targeted treatments owe their beneficial effect 
to disrupting the ‘oncogene addiction’ of a cancer cell 
to a mutated gene that drives cellular growth or sur-
vival. In fact it has been postulated that ‘most, if not 
all, dramatic responses of ‘tumor shrinkage’ following 
molecularly targeted therapy result from the acute inacti-
vation of an activated oncoprotein upon which the tumor 
cells became d ependent’’ [68]. Substantial effort is now 
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being channeled into discovering more of these onco-
genes against which small molecule inhibitors can be 
d eveloped for cancer treatment.

Genetic dependency screens aim to exploit the phe-
nomenon of oncogene addiction in a high-through-
put manner using small interfering RNA against 
multiple targets and assessing the functional outcome 
in the cancer cell [69]. Commercially available si/
shRNA libraries mean the method is now widely used 
by groups investigating novel drivers of oncogenesis 
leading to novel target discovery [70–75]. Project Achil-
les is a huge project from The Broad Institute initially 
undertaking the silencing of thousands of genes with 
shRNA in hundreds of cell lines [76]. This has yielded 
some novel targets in different cancer subtypes [77–79].

Rather than performing a genome-wide study, we 
developed a targeted approach using siRNA to knock-
down only those genes harboring somatic muta-
tions in specific lung cancer cell lines and assessed 
the effects on proliferation and cell survival [61]. In 
three out of six of these cell lines we discovered novel 
gain of function mutations that were subsequently 
validated. One benefit of this approach is a clear end-
point, where the genes identified to harbor potential 
gain-of-function mutations, can then be generated in 
the laboratory and tested to determine if the mutation 
does in fact increase the catalytic activity of the pro-
tein. Alternatively the cancer mutant can be expressed 
in cells to determine if the mutant allele may promote 
increases in survival or proliferation by more subtle 
mechanisms such as altered cellular localization or 
differential substrate specificity. The mutant genes we 
identified (PAK5, FGFR4 and MAP3K9) all activated 
the MEK-ERK pathway and the respective cell lines 
had increased sensitivity to MEK inhibitors. Analyz-
ing lung adenocarcinoma TCGA data reveals that the 
frequencies of cases with mutations in these genes are: 
PAK5 (11%), FGFR4 (5.2%) and MAP3K9 (4.7%). 
Inputting these three mutations into different online 
mutation assessors often predicts the FGFR4 and 
MAP3K9 mutations as unlikely to be pathogenic 
(Table 2). This highlights the benefit of using a tar-
geted siRNA screen to identify novel drivers that 
would otherwise not be predicted to be pathogenic.

While the MAP3K9 mutation in the H2009 cell 
line was reported by CCLE, it was not reported by an 
earlier version of COSMIC that also sequenced the 
cell line. Therefore, using just COSMIC data would 
have missed this gain-of-function mutation. This 
demonstrates how a targeted genetic dependency 
screen relies on high quality genomics data to ensure 
all genes mutated in a sample are silenced. The issue 
is also important for nontargeted genetic dependency 
screens such as Project Achilles as well as pharma-
cogenomics screens. If the mutational data from these 
cell lines are not complete it hinders attempts to inter-
pret the phenotypic response of the cell to the knock-
down or inhibition of a specific gene.

Interestingly, siRNA knockdown screens of the 
remaining three cell lines in our study did not iden-
tify a stand out driver mutation in terms of cellular 
proliferation. It remains to be seen whether this is due 
to no mutational drivers present in the cell lines or 
that a mutation is present but being missed by inad-
equate sequencing of GC rich regions. Another con-
sideration is that the driver mutations in these cell 
lines may exert their effect through loss-of-function 
mechanisms and a targeted screen like ours will not 
identify these. Synthetic lethality describes a mecha-
nism by which tumor cells often become more depen-
dent on a gene than a normal cell due to gain or loss 
of function of a different gene during the develop-
ment of the cancer [67,80,81]. Therefore, genome-wide 
knockdown, such as that used in the Achilles project, 
can be utilized to identify synthetically lethal genes 
that may be druggable. In addition, it is now pos-
sible to perform high-throughput screens for tumor 
suppressor genes using CRISPR/CAS technology [82].

Conclusion & future perspective
We highlight the challenges of using cancer genomics 
data aggregated from a large number of samples to iden-
tify driver mutations. Given the urgent need for effective 
targeted therapies against lung cancer, it is important to 
develop solutions to tackle this problem. The first step 
is to identify commonly mutated signaling pathways 
against which to develop targeted therapies. The three 
clinically successful targets mentioned in this review 

Table 2. Mutation predictor data for the three pathogenic mutations discovered with a targeted siRNA screen [61].

Target Cell line Mutation Provean  
(cut-off = -2.5)

Sift  
(cut-off = 0.05)

Mutationassessor.org Polyphen2

FGFR4 H2122 P712T Neutral (-0.09) Tolerated (0.242) Low functional impact Possibly damaging

MAP3K9 H2009 E179K Neutral (-2.21) Tolerated (0.085) Low functional impact Possibly damaging

PAK5 H2087 T538N Deleterious (-2.92) Damaging (0.045) Neutral Probably damaging

The FGFR4 and MAP3K9 mutations would be classified as nonpathological by three out of four of these assessors.   



10.2217/PGS.15.60 Pharmacogenomics (Epub ahead of print) future science group

Review    Hudson, Wirth, Stephenson, Fawdar, Brognard & Miller

(EGFR mutation, ALK rearrangements and ROS1 rear-
rangements) all occur predominantly in nonsmokers. 
Therefore smokers, often with multiple co-morbidi-
ties, lack targeted therapy options. Unfortunately, the 
mechanisms by which cigarette smoke causes cancer 
mean that smoking related tumors have a high muta-
tional burden with many passenger mutations. Figure 1 
illustrates the sources of potential bias in the analysis of 
aggregated genomics data. These issues become more 
problematic when mutational noise is increased. Gene 
length, expression level and replication timing all have 
the potential to distort mutation frequencies making 
it harder to identify driver mutations. We have shown 
how the ability to sequence difficult regions is improv-
ing with technological advances and that older data may 
be susceptible to bias due to sequencing cold-spots. It 
is obviously preferable to obtain matched normal tissue 
samples for comparison and, when this is not possible, 
inconsistencies in dbSNP reporting will impair the abil-
ity to identify driver mutations. Since germline data are 
obtained from a wide range of sources and situations, 
it can never be considered as reliable as matched nor-
mal tissue. A recent study has demonstrated that false-
positive calling of actionable mutations is significantly 
increased without normal tissue control [83]. Noncoding 
RNA and intronic mutations are not discussed here but 
present additional challenges.

Structural analysis has the potential to pre-
dict functional outcomes on a protein with a high 
degree of accuracy, but is currently unable to model 
how complex interactions between proteins within 
a cancer cell are disrupted as a consequence of co-
occurring mutations, variability in gene expression 
and additional regulatory pathways involving, for 
example, miRNAs and other noncoding loci. The 
limitations of mutation assessors are illustrated by our 
siRNA screen data in which two of three activating 
mutations would be predicted to be neutral in most of 
the online mutation assessors. By contrast, potentially 
detrimental mutations supported by structural stud-
ies, are only of relevance if the protein is expressed in 
the tissue of interest.

Although the state of the art has advanced rap-
idly, biological confirmation of in silico results is still 
critical, and usually involves knockdown of the gene 
of interest with small interfering RNA (si/shRNA), 
combined with functional read-outs for proliferation, 
cell viability or apoptosis. It is possible to use these 
approaches to perform high-throughput studies, but 
limitations such as inadequate sequencing can make 
it hard in practice to associate observed sensitivity 
with mutation status, causing targets to be missed. 
Similarly large-scale inhibitor studies suffer the same 
limitations [84]. In silico modeling is enhanced by the 
greater understanding of protein structure and func-
tion provided by wet-lab studies. Better character-
ization of protein domain function allows genomic 
data to be filtered for mutations by areas of func-
tional importance. The biochemical validation of the 
effects of a mutation also provides valuable informa-
tion with which to improve the training datasets used 
to develop these prediction tools. Driver mutation 
discovery is, therefore, enhanced if there is a virtuous 
circle in which existing genomics data are reanalyzed 
in the light of recent functional studies in order to 
identify further targets for evaluation at the bench – 
which then support additional rounds of progressive 
refinement and analysis.

NGS technology continues to progress rapidly, 
improving the coverage of hard to sequence regions and, 
as costs decrease, allowing genomes to be sequenced at 
higher depths. Together, these are contributing to sub-
stantial increases in the number of mutations that can 
be reliably detected. Unfortunately, since the technol-
ogy itself is unable to distinguish between driver and 
passenger mutations, these advances come with the 
challenge of increased levels of mutational noise. The 
advances in genome profiling are, therefore, increas-
ingly dependent on concomitant improvements in 
the techniques used to identify actionable mutations. 
While sequencing of cancer genomes will continue to 
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Figure 1. Summary schematic highlighting the factors leading to biases 
and heterogeneity of mutational data. In areas of uniform mutational 
rates longer coding genes will demonstrate a higher mutational 
frequency if the data are not length corrected. Genes that are not 
expressed and those that replicate late in the cell cycle will have higher 
mutational rates. Genes with large GC-rich regions will have inadequate 
sequencing coverage and potential mutations will be missed leading to an 
underreporting of mutations in these genes.
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accumulate, research efforts should shift to functional 
genomics to aid in the elucidation of novel drivers so 
that lung cancer patients can benefit from targeted 
therapies, likely in combination with immunothera-
pies. Pinpointing these drivers and targeting them 
with precision medicines will portend a future where 
lung cancer patients will be treated with therapies that 
extend survival while preserving quality of life.
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Executive summary

Online aggregated cancer genomics data
•	 Large-scale cancer genomics programs such as TCGA, COSMIC and CCLE have been instrumental in discovering 

novel mutational drivers of cancer in many cancer subtypes.
•	 In lung cancer there have been some notable clinical successes in targeting these drivers (EGFR mutations, ALK 

translocations, ROS translocations). However, the majority of lung cancer patients who benefit from these 
treatments are never/light smokers.

•	 Lung cancer associated with smoking is characterized by a high mutational burden and the main hindrance 
to target discovery is identifying the few driver mutations from hundreds of inconsequential passenger 
mutations in each sample.

Playing the numbers game
•	 Using mutational frequency in hundreds of cancer samples to select targets for further investigation is a 

powerful way to discover common mutations but certain considerations should be made.
•	 Gene length will influence frequency results to over-represent longer proteins if a length correction is not 

made.
•	 Genes with low expression and/or late replication timing will have a higher mutational rate.
•	 Poor sequencing of GC-rich regions (sequencing cold-spots) will lead to under-reporting of mutations and 

these cold-spots may be hiding potential high frequency mutations.
•	 Germline filtering without normal tissue comparison can introduce error.
From numbers to predictions: in silico analysis of mutations
•	 Online mutation prediction programs can be used in a high-throughput manner to analyze whole exome data 

to select functional mutations.
•	 Identifying marks of positive selection are fundamental to extracting the driver mutations. These marks are 

observed in a broad spectrum of data and combining different analyses will likely yield the most success.
•	 Molecular dynamics simulations provide a more detailed analysis of the structural ramifications of a given 

mutation but require a known crystal structure and a large computational resource.
Genetic-dependency screens
•	 si/shRNA screens exploit the oncogene addiction of cancer cells on a high-throughput scale to compare the 

functional effects of gene knockdown.
•	 We used a targeted screen to knockdown all mutated genes in specific lung cancer cell lines and discovered 

three novel mutational drivers of lung cancer (PAK5, MAP3K9, FGFR4).
•	 Incomplete genomics data (including sequencing cold-spots) and potential loss-of-function mutational drivers 

may explain why three of the cell lines tested did not have an identifiable driver mutations using the targeted 
siRNA screen.

Conclusion & future perspective
•	 Identifying driver mutations in lung cancer genomics data remains a large challenge and there is much 

opportunity to identify targetable mutations for the benefit of patients.
•	 The different methods detailed in this review have specific strengths and weaknesses and a combination of 

approaches is required to capture all driver mutations.
•	 As sequencing technology improves and becomes cheaper, the scale of mutational data will increase but this 

will also increase the amount of mutational noise.
•	 An increased focus on functional genomics is required to develop clinically effective precision medicines from 

the large-scale data.
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