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Growth factor receptor levels are aberrantly high in diverse cancers,
driving the proliferation and survival of tumor cells. Understanding
the molecular basis for this aberrant elevation has profound clinical
implications. Here we show that the pleckstrin homology domain
leucine-rich repeat protein phosphatase (PHLPP) suppresses receptor
tyrosine kinase (RTK) signaling output by a previously unidentified
epigenetic mechanism unrelated to its previously described function
as the hydrophobic motif phosphatase for the protein kinase AKT,
protein kinase C, and S6 kinase. Specifically, we show that nuclear-
localized PHLPP suppresses histone phosphorylation and acetyla-
tion, in turn suppressing the transcription of diverse growth factor
receptors, including the EGF receptor. These data uncover a much
broader role for PHLPP in regulation of growth factor signaling be-
yond its direct inactivation of AKT: By suppressing RTK levels, PHLPP
dampens the downstream signaling output of two major oncogenic
pathways, the PI3 kinase/AKT and the Rat sarcoma (RAS)/ERK path-
ways. Our data are consistent with a model in which PHLPP modifies
the histone code to control the transcription of RTKs.

Binding of growth factors to receptor tyrosine kinases (RTKs)
initiates a multitude of key cellular processes, including growth,

proliferation, and survival (1). Two of the major growth factor-
activated pathways downstream of RTKs are the Rat sarcoma
(RAS)/ERK and phosphatidylinositol-3 kinase (PI3 kinase)/protein
kinase AKT pathways. Dysregulation of either pathway leads
to uncontrolled cell proliferation and evasion of apoptosis, both
hallmarks of cancer (2). Amplified signaling by RTKs is as-
sociated with diverse human cancers, as a result of somatic gain-of-
function mutations of the RTKs, gene amplification, or epigenetic
changes that cause increased expression of these receptors (3).
Underscoring the prevalence of increased RTK levels in cancers,
amplified expression of the EGF receptor (EGFR) family member
human epidermal growth factor receptor 2 (HER2) is present in
up to 30% of human breast cancers (4), a disease which accounts
for a striking 30% of all new cancer cases in the United States
each year (5). Similarly, 30% of prostate cancers have been
reported to have elevated expression of EGFR without evi-
dence of gene amplification (6). This increased expression of
RTKs correlates with poor disease prognosis (7, 8).
The regulation of protein expression by epigenetic mechanisms

is reversible and thus is a particularly attractive target for cancer
therapy (9, 10). Covalent modifications of histones, including
acetylation, phosphorylation, methylation, and ubiquitination, form
a dynamic and complex “histone code” that is “written” and
“erased” by histone modifiers and “read” by chromatin-remodeling
complexes and transcriptional coregulators to control gene tran-
scription (11–14). Small-molecule inhibitors of chromatin remod-
elers show potential as effective chemotherapeutic targets (15).
Most notably, histone deacetylases (HDACs) are of significant
interest as chemotherapeutic targets (16, 17). Phosphorylation is
gaining increasing recognition as a key symbol in the histone code

(18). Collaboration between phosphorylation and acetylation/
methylation on histone tails influences a multitude of cellular
processes, including transcription of target genes. For example,
multiple lines of evidence support synergism between histone
acetylation and phosphorylation in the induction of immediate-
early genes (such as c-jun, c-fos, and c-myc) after mitogenic stimu-
lation. Furthermore, having one modification can increase the ef-
ficiency of an enzyme catalyzing a second modification; for example,
phosphorylation of histone H3 on Ser10 (H3S10) promotes Lys
acetylation by the GCN5 acetyltransferase (18–21). H3S28 phos-
phorylation at gene promoters induces demethylation and acety-
lation of Lys27 (K27), thereby activating transcription of these
genes (22). Thus, phosphorylation of histones is a critical com-
ponent of the histone code. Much emphasis has been placed on
the kinases that modify this code (12, 18, 23), but much less is
known about the phosphatases that modify the histone code.
The pleckstrin homology domain leucine-rich repeat protein

phosphatase (PHLPP) family of Ser/Thr phosphatases was discov-
ered in a search to identify a phosphatase that could directly de-
phosphorylate and inactivate the prosurvival kinase AKT (24).
PHLPP phosphatases specifically dephosphorylate the hydrophobic
motif of AKT (Ser473 in Akt1) but not the activation loop site
(Thr308 in Akt1, a site phosphorylated by PDK1), and its genetic
depletion, overexpression, or inhibition by small molecule inhibitors

Significance

This work unveils a previously unidentified function of the tu-
mor suppressor pleckstrin homology domain leucine-rich repeat
protein phosphatase (PHLPP) in inhibiting oncogenic signaling
by suppressing the steady-state levels of receptor tyrosine
kinases such as the EGF receptor. Specifically, PHLPP modifies
the histone code to control the transcription of receptor tyrosine
kinases. This epigenetic function can account for the upregula-
tion of receptor tyrosine kinases in the multiple cancer types
where PHLPP function is compromised.

Author contributions: G.R., M.N., K.C.-K., J.D.S., M.T.K., M.C., L.C.T., C.K.G., and A.C.N.
designed research; G.R., M.N., K.C.-K., J.D.S., M.T.K., M.C., J.B., E.S., T.G., and D.G.N.
performed research; E.S. contributed new reagents/analytic tools; G.R., M.N., K.C.-K.,
J.D.S., M.T.K., M.C., C.K.G., and A.C.N. analyzed data; and A.C.N. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1G.R. and M.N. contributed equally to this work.
2Present address: Signalling Networks in Cancer Group, Cancer Research UK Manchester
Institute, University of Manchester, Manchester M20 4BX, United Kingdom.

3Present address: Institute for Molecular Bioscience, University of Queensland, St Lucia,
QLD 4072, Australia.

4To whom correspondence should be addressed. Email: anewton@ucsd.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1404221111/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1404221111 PNAS | Published online September 8, 2014 | E3957–E3965

BI
O
CH

EM
IS
TR

Y
PN

A
S
PL

U
S

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cold Spring Harbor Laboratory Institutional Repository

https://core.ac.uk/display/33027132?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1404221111&domain=pdf
mailto:anewton@ucsd.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1404221111/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1404221111/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1404221111


(25) has been shown to regulate the phosphorylation state of Ser473
in numerous studies (e.g., refs. 26–30). The family comprises two
genes: PHLPP1, which is alternatively spliced to yield PHLPP1α
and PHLPP1β, and PHLPP2 (24, 31). The expression of both
PHLPP1 and PHLPP2 is commonly decreased in a large number of
diverse cancers (reviewed in ref. 32), and genetic deletion of one
isoform, PHLPP1, is sufficient to cause prostate tumors in a mouse
model (33). Their down-regulation is associated with hypoxia-
induced resistance to chemotherapy (34), further underscoring their
role in cancer. Consistent with their tumor-suppressive function,
PHLPP1 and PHLPP2 are on chromosomal loci (18q21.33 and
16q22.3, respectively) that frequently are deleted in cancer (33). The
PHLPP2 locus is one of themost frequently deleted in breast cancer
(35), and that of PHLPP1 is one of the most highly deleted in colon
cancer (36). Recent studies have established that PHLPP1 and
PHLPP2 suppress oncogenic signaling by at least two mechanisms
(reviewed in ref. 37): (i) direct dephosphorylation and inactivation
of the prosurvival kinase AKT, PKC (38), and S6 kinase (39), and
(ii) direct dephosphorylation and activation of the proapoptotic
kinase Mst1 (40). Whether additional mechanisms account for the
tumor-suppressive function of PHLPP is largely unexplored.
Here we report that PHLPP controls the amplitude of growth

factor signaling by a previously unidentified mechanism that is
independent of its direct dephosphorylation of AKT, PKC, or S6
kinase: It suppresses the steady-state levels of RTKs such as the

EGFR by suppressing histone phosphorylation and acetylation
and thus receptor transcription. These data reveal that PHLPP
isozymes play a much broader role in blunting the cell’s ability to
respond to EGF and activate downstream signaling cascades: In
addition to regulating individual signaling pathways (e.g., AKT
and PKC), PHLPP isozymes set the amplitude of RTK signaling
by serving as regulators of RTK transcription.

Results
Analysis of immortalized mouse embryonic fibroblasts (MEFs)
from Phlpp1−/− mice (in which both PHLPP1α and PHLPP1β are
deleted) revealed that levels of EGFR protein are highly ele-
vated compared with those in wild-type MEFs. Fig. 1A shows
a robust (5.9 ± 0.7-fold) increase in steady-state levels of EGFR
protein in Phlpp1−/− MEFs (lane 2) compared with wild-type
MEFs (lane 1). This increase could be partially rescued by rein-
troduction of full-length PHLPP1β into the Phlpp1−/− MEFs (lane
3), but not a construct lacking catalytic activity (41) (lane 4) or one
lacking the LRR segment (lane 6). This latter construct increased
the EGFR levels even further, suggesting that it functions as
a dominant negative to the remaining PHLPP isozyme, PHLPP2.
In contrast, constructs lacking the PH domain (lane 5) or PSD-95,
disheveled, and ZO1 (PDZ) ligand (lane 7) suppressed EGFR
levels similar to those in wild-type PHLPP1. Note that all deletion
constructs of PHLPP retain catalytic activity. As a control for the
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Fig. 1. PHLPP1 restricts EGFR expression and signaling. (A) Western blots (Middle) of Phlpp1+/+ (+/+), Phlpp1−/− (−/−), and Phlpp1−/− cells reconstituted with
different PHLPP1β constructs showing EGFR and PKCα total levels. The HA signal indicates the expression of wild-type PHLPP1β (WT), catalytically inactive
PHLPP1β (dead), PHLPP1βwithout the PH domain (ΔPH), PHLPP1βwithout the LLRs (ΔLRR), or PHLPP1β from which the PDZ binding motif was deleted (ΔPDZ).
Domain structure of PHLPP1β (Top), which also includes a putative Ras association (RA) domain. The graph (Bottom) represents the quantification of three
independent reconstitution experiments. ***P < 0.001, **P < 0.01, and *P < 0.05 by Student t test. (B) EGFR levels in the MCF10A breast cell line treated with
control (C), PHLPP1 (P1), PHLPP2 (P2), or PHLPP1 and PHLPP2 (P1+P2) siRNA. (C) EGFR levels in an LN444 glioblastoma cancer cell line treated with control (C),
PHLPP1 (P1), PHLPP2 (P2), or PHLPP1 and PHLPP2 (P1+P2) siRNA; these cells have the more common and active variant of PHLPP2 with Leu at position 1016. (D)
EGFR levels in the ZR-75-1 breast cancer cell line treated with control (C), PHLPP1 (P1), PHLPP2 (P2), or PHLPP1 and PHLPP2 (P1+P2) siRNA; these cells have the
L1016S polymorphic variant of PHLPP2 that is inactive toward Akt and PKC. Western blots in B–D also probed for total and phosphorylated Erk (pT202/
pY204) and are representative of three independent experiments. (E, Left) MCF10A cells transduced with shRNA against PHLPP1 were grown on Matrigel
for 20 d to form 3D structures. The structures then were fixed and stained with anti-EGFR antibody, and the nuclei were counterstained with DRAQ5. (Scale
bar: 50 μm.) (Right) The blots show the level of EGFR and the knockdown of PHLPP1 in these structures. (F) EGFR and insulin receptor (INSR) levels in Phlpp1+/+ (+/+)
and Phlpp1− /− (−/−) mouse prostate tissue. (G) Western blots probing for EGF, PDGF, or INSR levels in whole-cell lysates from Phlpp1+/+ (+/+) and
Phlpp1− /− (−/−) MEFs.
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function of PHLPP, we confirmed that lack of PHLPP1 resulted in
increased steady-state levels of PKCα (PKCα panel; see ref. 38,
which shows that phosphorylation increases the stability of PKC
isozymes); reintroduction of PHLPP1β decreased the steady-state
levels of PKCα in a manner that depended on the catalytic activity
and presence of the PH domain (which is required for PHLPP to
recognize PKC in cells) but not in the presence of the PDZ ligand
(which is not required for PHLPP to recognize PKC in cells) (38).
These data reveal that PHLPP1 suppresses the steady-state levels
of the EGFR by a mechanism depending on its catalytic activity
and an intact LRR segment.
To ask whether PHLPP2 also controls RTK levels, we de-

pleted PHLPP1, PHLPP2, or both in a number of normal and
cancer cell lines. Depletion of either PHLPP1 or PHLPP2 by
siRNA resulted in an increase in EGFR levels in the normal
breast cell line MCF10A (Fig. 1B), the glioblastoma cell line
LN444 (Fig. 1C), and the breast cancer cell line ZR-75-1 (Fig.
1D). Similar results were observed in HeLa cells and A549 lung
adenocarcinoma cells. Knockdown of both PHLPP isozymes
resulted in an even greater increase in EGFR levels, with the
magnitude of the increase varying with cell type. Previously we
have shown that the ZR-75-1 cells contain the Leu1016Ser
polymorphic variant of PHLPP2 that does not regulate AKT or
PKC: Knockdown of PHLPP2 in these cells has no effect on the
phosphorylation state of AKT or levels of PKC (42). Impor-
tantly, knockdown of PHLPP2 in the ZR-75-1 cells causes a ro-
bust increase in EGFR levels and downstream ERK activation
(Fig. 1D, lane 3). Thus, the Leu1016Ser polymorphic variant
maintains function toward regulation of EGFR levels. These
data reveal that knockdown of either PHLPP1 or PHLPP2
causes a robust increase in the steady-state levels of EGFR and
that, at least for PHLPP2, this effect is independent of the ability
of PHLPP to dephosphorylate AKT directly. EGFR levels were

elevated in MCF10A cells treated with shRNA against PHLPP1
compared with control, as assessed by both Western blot and
immunocytochemistry of MCF10A acinar structures (Fig. 1E).
Previously we have shown that the loss of Phlpp1 triggers

neoplasia in prostate, consistent with its frequent alteration in
human prostate cancer (33). Western blot analysis revealed that
steady-state levels of the EGFR were elevated in prostate sam-
ples from Phlpp1−/− mice as compared with wild-type mice,
suggesting that PHLPP regulation of EGFR levels may be in-
tegral to its tumor-suppressive function in this context (Fig. 1F
(33). Levels of the INSR were elevated in prostates of Phlpp1−/−

mice (Fig. 1F) and Phlpp1−/− MEFs (Fig. 1G); PDGF receptor
(PDGFR) also was elevated in Phlpp1−/− MEFs (Fig. 1G). These
data are consistent with PHLPP’s suppressing the levels of multiple
oncogenic RTKs.
To assess whether the increased EGFR protein was localized

at the plasma membrane where the EGFR signals, wild-type
or Phlpp1−/− MEFs were surface-labeled with biotin, and the
amount of EGFR present in pulldowns using the biotin-reacting
compound streptavidin was assessed (Fig. 2A). The amount of
EGFR pulled down by streptavidin (and hence surface-bio-
tinylated) was an order of magnitude higher in Phlpp1−/− MEFs
than in wild-type MEFs (Fig. 2A, Upper, compare lanes 3 and 4).
As a control, streptavidin pulled down comparable levels of the
most readily accessible surface proteins [compare the intensities
of major streptavidin-labeled bands in Fig. 2A, Right and similar
levels of transferrin receptor in wild-type (lane 3) and Phlpp1−/−

(lane 4) MEFs].
To explore whether the elevated EGFR protein resulting from

the depletion of PHLPP is signaling competent, we took ad-
vantage of a genetically encoded FRET-based EGFR kinase
activity sensor (43) to monitor the basal (serum-starved) and
agonist-dependent EGFR kinase activity in real time, in live

150 

40 

150 

40 

0.99 

1.00 

1.01 

1.02 

1.03 

0 10 20 

Time (min) 

Con siRNA 
P1+P2 siRNA 

EGF AG1478 A B 

pEGFR (Y1068) 

EGFR 

pERK1/2 

ERK1/2 

Gefitinib, M:      0  0.1 0.3  1   3  10   0  0.1 0.3  1   3   10 

+/+ -/- 

40 

175 175 EGFR 
+/+  -/- +/+  -/- 

Lysates
Strep 

Pull Down

80 

175 

30 

80 

56 
46 

80 

175 

30 

80 

56 
46 

Streptavidin 

TrF R 

1    2     

3   4     Actin 

C 

E
G

F
R

 k
in

as
e 

ac
tiv

ity
  

re
l.u

ni
ts

0
0

50

100

Gefitinib, µM

Ac
tiv

at
ed

 E
G

FR
, %

 to
ta

l

+/+
-/-

                0.0001  0.001   0.01   0.1      1        10   

P
ho

sp
ho

-E
G

F
R

re
l. 

un
its
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cells. The amplitude of EGF-stimulated EGFR tyrosine kinase
activity was significantly higher in HeLa cells in which both
PHLPP1 and PHLPP2 were depleted by siRNA than in control
cells (Fig. 2B). This EGF-dependent activity was reversed by the
EGFR tyrosine kinase inhibitor AG1478. Because activity was
reversed to the starting basal (serum-starved) level, these data
suggest that there is no significant basal EGFR kinase activity,
regardless of PHLPP depletion. Rather, PHLPP suppresses
agonist-dependent receptor activity.
We next addressed whether PHLPP altered the pharmacology

of the EGFR. Treatment of either wild-type or Phlpp1−/− MEFs
with gefitinib, an active-site inhibitor of the tyrosine kinase ac-
tivity of the EGFR and an effective therapy in nonsmall cell lung
carcinoma (44), resulted in identical dose–response curves (Fig.
2C). Thus, PHLPP alters the levels but not the pharmacological
profile of the EGFR.
The increased EGFR levels and activity conferred a pro-

liferation advantage to cells: Fig. 3A shows that immortalized
MEFs isolated from Phlpp1−/− mice (filled squares) proliferated
at a considerably faster rate than those isolated from wild-type
mice (open squares). These immortalized MEFs likely have lost
the ability to activate p53, because we previously have shown that
loss of p53 is required for Phlpp1−/− MEFs to proliferate at a
higher rate than control MEFs (33). This increased proliferation
rate resulted from lack of PHLPP1 catalytic activity, because
stable reintroduction of wild-type PHLPP1β (gray triangles), but
not a catalytically-inactive construct of PHLPP1β (red triangles),
into Phlpp1−/− MEFs reduced the rate of proliferation to that
observed in the wild-type MEFs. Pharmacological inhibitors
revealed that this increased proliferation resulted in part from
increased PI3 kinase signaling and in part from increased ERK
signaling: The reduction in the G1/S ratio (reflecting cells en-

tering the cell cycle at a faster rate) observed in cells depleted of
both PHLPP isozymes compared with wild-type cells was decreased
by approximately half in cells treated with either LY294002 to in-
hibit PI3 kinase/AKT or U0126 to inhibit MEK/ERK but was
abolished in cells treated with both inhibitors (Fig. 3B). In
summary, these data reveal that loss of PHLPP results in an
elevation of signaling-competent EGFR, which leads to ampli-
fied signaling by two downstream pathways, PI3 kinase and ERK,
in turn increasing cell proliferation.
Reasoning that the increase in EGFR levels would increase

downstream signaling, we focused on assessing the impact of
PHLPP knockdown on the ERK pathway. Both basal and EGF-
dependent ERK phosphorylation was markedly enhanced in the
glioblastoma cell line LN444 and the breast cancer cell line ZR-
75-1 depleted of PHLPP1, PHLPP2, or both isozymes (Fig. 3 C
and D; see also Fig. 1 C and D). Analysis of the kinetics of ago-
nist-evoked ERK phosphorylation revealed a robust increase in
the amplitude of ERK phosphorylation both in LN444 cells de-
pleted of both PHLPP1 and PHLPP2 (Fig. 3E) and in Phlpp1−/−

MEFs (Fig. 3F). However, the rate of subsequent de-
phosphorylation of ERK was not significantly different in cells
with or without PHLPP (t1/2 for dephosphorylation was 50 ± 7 and
44 ± 2 min, respectively, in LN444 cells and 26 ± 13 and 28 ±
3 min, respectively, in MEFs). Thus, PHLPP suppresses the agonist-
dependent phosphorylation of ERK but does not control the
postactivation dephosphorylation of ERK. These data reveal that
PHLPP1 and PHLPP2 suppress the activation of ERK in re-
sponse to EGF, a logical consequence of their role in suppressing
EGFR levels.
We next addressed whether PHLPP suppresses the steady-state

levels of EGFR by (i) inhibiting its biosynthesis or (ii) promoting
its degradation. To examine the rate of biosynthesis, wild-type or
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Phlpp1−/− MEFs were incubated with medium containing 35S-Met/
Cys, and the incorporation of radioactivity into immunoprecipitated
EGFR was monitored as a function of time. Quantitative analysis of
incorporated radioactivity at a band comigrating with the immu-
noprecipitated EGFR revealed a 2.5-fold increase in the rate of
biosynthesis in cells lacking PHLPP1 (252 ± 50 cpm incorporated
per minute) compared with wild-type cells (104 ± 10 cpm in-
corporated per minute) (Fig. 4A). In contrast to the rate of bio-
synthesis, the rate of EGF-stimulated degradation of the EGFR was
the same in wild-type (30 ± 17 min) and Phlpp1−/− MEFs (30 ± 15
min) (Fig. 4B). Similarly, the basal rate of turnover of the receptor,
assessed after treatment of cells with cycloheximide to prevent
protein synthesis, was not significantly different in wild-type cells
(8 ± 4 h) and cells lacking PHLPP1 (11 ± 4 h) (Fig. 4C). Given the
increased rate of biosynthesis, we reasoned that mRNA levels of the
EGFR might be elevated in cells lacking PHLPP1. Indeed, quan-
titative RT-PCR (qRT-PCR) analysis revealed a 20 ± 5-fold in-
crease in the levels of EGFR mRNA in Phlpp1−/− MEFs compared
with wild-type MEFs; this increase was reduced twofold upon
reintroduction of PHLPP1β into Phlpp1−/− MEFs (Fig. 4D).
Importantly, EGFR mRNA was elevated in the Phlpp1−/− mouse:
EGFR mRNA was approximately twofold higher in prostates
from 6-mo-old Phlpp1−/− mice than in prostates from wild-type
littermates (Fig. 4E). Last, we examined whether the mRNA
levels were elevated because of increased stability. The addition
of actinomycin D to prevent mRNA transcription revealed that
the rate of decay of existing mRNA was the same in wild-type
and Phlpp1−/− MEFs (Fig. 4F). Thus, loss of PHLPP1 resulted
in increased mRNA levels and an increased rate of protein
translation of the EGFR, resulting in increased steady-state
levels. [Note that there is not a linear correlation between
mRNA and protein translation rates (45)]. Taken together,

these data show that PHLPP suppresses the transcription of
the EGFR.
We next used a pharmacological approach to identify targets of

PHLPP that could control the transcription of RTKs and thus their
steady-state levels. Pharmacological inhibitors of known PHLPP
targets (including the EGFR itself) had no significant effect on the
ability of PHLPP depletion to increase EGFR expression (Fig. S1).
Inhibition of PI3 kinase signaling with LY294002 (LY) (lane 3),
ERK signaling with U0126 (UO) (lane 4), PKC signaling with
Gö6983 (Gö) (lane 5), or EGFR tyrosine kinase signaling with
AG1478 (AG) (lane 6) had no significant effect on the increased
levels of EGFR in PHLPP-knockdown cells relative to untreated
controls (lane 2).
The finding that PHLPP controls the transcription of the EGFR

led us to ask whether nuclear localization of PHLPP is necessary
for this function. Specifically, we examined whether addition of
a nuclear localization signal (NLS) onto the ΔLRR construct of
PHLPP, which loses the ability to regulate the EGFR, could re-
store regulation of the EGFR. The data in Fig. 5A show that re-
constitution of Phlpp1−/− MEFs with wild-type PHLPP1β (lane 2)
reduced the EGFR level compared with vector control (lane 1),
whereas reconstitution with the ΔLRR construct increased EGFR
levels (lanes 3 and 4). However, a construct in which an NLS was
fused to theΔLRR effectively reduced EGFR levels (lanes 5 and 6).
These findings are consistent with the LRR segment of PHLPP
driving or retaining PHLPP in the nucleus, where it regulates
EGFR transcription.
Given that PHLPP loss up-regulated several RTKs, we hy-

pothesized that PHLPP could modify the histone code so as to
suppress transcription. Thus, we explored the effect of PHLPP
deletion on histone acetylation and histone phosphorylation.
Analysis of histone modifications revealed a selective increase in

A

D

B C

E F

Fig. 4. PHLPP1 regulates synthesis, not degradation, of the EGFR. (A) Phlpp1+/+ (+/+) or Phlpp1−/− (−/−) MEFs were labeled with [35S]Met/Cys for the indicated
times, and total EGFR was immunoprecipitated from the lysates. The graph shows the quantification of radiolabeled EGFR of three independent experiments; the
error bars indicate the SEM. (B) Degradation curve of the EGFR in Phlpp1+/+ (+/+) and Phlpp1−/− (−/−) cells upon EGF stimulation (10 ng/mL) for the indicated times.
EGFR levels were analyzed byWestern blot analysis of whole-cell lysates. Each point represents the percentage of EGFR normalized to time 0 (no EGF). The graphs
show the quantification of three independent experiments. Error bars indicate the SEM. (C) Degradation curve of the EGFR in Phlpp1+/+ (+/+) and Phlpp1−/− (−/−)
cells under steady-state conditions. Cells were treated with cycloheximide (5 μM) for the indicated times. Total EGFR levels were analyzed byWestern blot with an
anti-EGFR antibody. Each point represents the percentage of EGFR normalized to control (without cycloheximide). The graph shows the quantification of three
independent experiments. Error bars indicate SEM. (D) qRT-PCR of EGFR in Phlpp1+/+ (+/+), Phlpp1−/− (−/−), or Phlpp1−/− cells reconstituted with wild-type
HA-PHLPP1β (+WT). Each point was normalized to TATA box-binding protein as an internal control and then to wild type. Error bars represent the SEM of three
independent experiments. (E) qRT-PCR of EGFR (mean ± SEM) from 6-mo-old Phlpp1+/+ (+/+) and Phlpp1−/− (−/−) mouse prostate tissue. ***P < 0.001 by Student t
test. (F) EGFR mRNA levels in Phlpp1+/+ (+/+) and Phlpp1−/− (−/−) cells treated with actinomycin D (5 μg/mL) for the indicated times. Each point was normalized to
an internal control (GAPDH) and then to control (without actinomycin D). Error bars indicate the SEM of three independent experiments.
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the acetylation of specific histones at specific sites in Phlpp1−/−

MEFs compared with wild-type MEFs (Fig. 5B). Specifically,
acetylation was increased on K27 but not K9 on H3; phosphory-
lation was not significantly altered on S10 and S28; there was
a robust increase in the double modification of S10 and K9 but not
of S10 and K14. Lys acetylation was increased in H2A and H2B,
but not H4; S139 phosphorylation was increased in H2A; no
change in phosphorylation was noted on S14 inH2B. The increases
in histone acetylation were reversed in Phlpp1−/− MEFs in which
PHLPP1β had been reintroduced (Fig. S2). These data reveal
a selective modification of the histone code by PHLPP1.
We next asked whether acetylated histones preferentially as-

sociated with the EGFR, INSR, and PDGFR promoters. ChIP
assays revealed a significant increase in H3K27ac at the EGFR,
PDGFR, and INSR promoters but not at the promoters of two
genes whose mRNA levels are not affected by PHLPP1, Cxcl10
or Ccl4, in samples from Phlpp1−/− MEFs as compared with wild-
type MEFs (Fig. 6A). In contrast, there was no significant dif-
ference in the H4K5ac at the EGFR promoter or control pro-
moters, but there was increased H4K5ac at the INSR and
PDGFR promoters in Phlpp1−/− vs. wild-type MEFs. Although
not detected on Western blot, there was a modest increase in
H3K9ac at the EGFR promoter in Phlpp1−/− compared with
wild-type MEFs. These data are consistent with PHLPP sup-

pressing the transcription of RTKs by regulating histone acety-
lation at their receptor promoters.
If PHLPP controls the transcription of RTKs, we reasoned

that loss of PHLPP would result in an increase of actively
transcribed RTK mRNAs. We performed a global run-on experi-
ment, which measures actively transcribing mRNAs (46), to show
that the rate of transcription of EGFR, INSR, and PDGFR, but not
the control genes 36B4, CCL4, or CXCl10, was increased signifi-
cantly in Phlpp1−/− vs. wild-type MEFs (Fig. 6B).
Last, we asked whether PHLPP1 binds to the RTK promoters.

ChIP using antibodies to endogenous PHLPP1 revealed robust
recruitment of PHLPP1 to the promoters of the EGFR, PDGFR,
and INSR but not to the two control promoters (Fig. 6C). Note
that the data are presented as the binding observed in the wild-
type cells over the Phlpp1−/− MEFs to control for any nonspecific
binding. These data demonstrate that PHLPP is actively recruited
to the RTK promoters.

Discussion
The foregoing data unveil a previously unidentified mechanism
by which PHLPP suppresses growth factor signaling: suppression
of the steady-state levels of RTKs, notably the EGFR, by inhib-
iting their transcription (Fig. 7, Left). This mechanism is distinct
from the previously characterized direct dephosphorylation of
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AKT (Fig. 7, Right) or PKC, which is selective for the hydrophobic
motif, does not occur with the Leu1016Ser polymorphic variant of
PHLPP2, requires an intact PDZ ligand (for AKT) or PH domain
(for PKC), and dominates under basal conditions (24, 31, 42). In
contrast, the mechanism regulating EGFR transcription is up-
stream of AKT and thus affects the phosphorylation state of both
the hydrophobic motif and activation loop of AKT, remains intact
with the Leu1016Ser polymorphic variant of PHLPP2, does not
depend on the PDZ ligand or PH domain, requires an intact LRR
and nuclear localization, and dominates under agonist-evoked
conditions. Our data reveal an additional tumor-suppressive role
for PHLPP as a regulator of RTK levels, thus broadly controlling
multiple oncogenic pathways downstream of RTKs.

PHLPP Suppresses Histone Acetylation and RTK Transcription. Analysis
of tissue or MEFs from Phlpp1−/−mice reveals that loss of PHLPP1
results in a robust increase in the steady-state levels of multiple
RTKs, including the EGFR. Depletion of either PHLPP1 or
PHLPP2 in both normal and cancer cell lines reveals that both
PHLPP isozymes suppress RTK levels. Pharmacological analysis
showed that the suppression of RTK levels by PHLPP is unlikely
to be controlled by any of the known PHLPP substrates: Chronic
inhibition of the three pathways (AKT, ERK, and PKC) currently
known to be suppressed by PHLPP yielded no significant change in
EGFR levels. Rather, RTK levels are regulated by a previously
unidentified nuclear function of PHLPP in suppression of the

acetylation of specific histones at specific sites. Rescue experiments
reveal that the catalytic activity of PHLPP is required, as is the
LRR domain; however the requirement for the LRR can be
bypassed by forcing PHLPP into the nucleus by fusing an NLS on
the protein. This nuclear localization is supported by previous
fractionation studies showing PHLPP1 accumulation in the nucleus
(47) and the ability to detect PHLPP1 at RTK promoters by ChIP
assay. This nuclear-localized PHLPP suppresses acetylation of
specific sites on the N-terminal tails of histones H2A, H2B, H3,
and H4. At this point the mechanism for the PHLPP1-dependent
increase in acetylation is unclear, but it is intriguing to note that
these N-terminal tails are modified by phosphorylation. Thus, it
will be of interest to determine whether PHLPP1 directly targets
the phosphorylation of specific histone residues or influences the
activity of histone acetyltransferases.

PHLPP as a Modifier of the Histone Code. Our data support a key
role of PHLPP in modifying the histone code. Loss of PHLPP
results in robust increases in phosphorylation and/or acetylation
at specific sites on each of the four core histones. Whether these
changes in the histone code result from direct dephosphorylation
of residues such as S10 and S28 on H3 and S139 on H2A, in turn
influencing acetylation at adjacent sites, remains to be eluci-
dated. Indeed, molecular crosstalk is known to occur between
histone phosphorylation and acetylation (18). Notably, phosphory-
lation at S10 and T11 of H3 leads to an increase in acetylation at

A 

B

0 

5 

10 

15 

%
 In

pu
t 

EGFR TSS 

0 

4 

8 

12 

16 

%
 In

pu
t 

INSR TSS 

0 

1 

2 

3 

4 

5 

%
 In

pu
t 

PDGFR TSS 

C 

0 

200 

400 

600 

800 

E
nr

ic
hm

en
t (

W
T/

K
O

) 

0 

2 

4 

6 

%
 In

pu
t 

CXCL10 TSS 

0 

5 

10 

%
 In

pu
t

CCL4 TSS 

0 

5 

10 

15 

Fo
ld

 C
ha

ng
e 

n.d. n.d. 

+/+ 
-/- 

+/+ 
-/- 

+/+ 
-/- 

+/+ 
-/- 

+/+ 
-/- 

+/+ 
-/- 

Fig. 6. PHLPP1 binds RTK promoters and controls RTK transcription. (A) ChIP assays assessing the levels of H3K9ac, H3K27ac, and H4K5ac at the transcription
start sites (TSS) for the EGFR, INSR, PDGFR, Cxcl10, and Ccl4 genes in wild-type (+/+) and Phlpp1−/− (−/−) MEFs. (B) Quantification of nuclear run-on for 36B4,
EGFR, INSR, PDGFR, Cxcl10, and CCL4 mRNA in wild-type (+/+) and Phlpp1−/− (−/−) MEFs. (C) ChIP assays assessing the recruitment of PHLPP1 at the tran-
scription start sites (TSS) for the EGFR, INSR, PDGFR, CCl4, and CXCL10 genes in wild-type and Phlpp1−/− (KO) MEFs. Data shown represent the enrichment of
the signal from the wild-type MEFs vs. signal from the Phlpp1−/− MEFs.

Reyes et al. PNAS | Published online September 8, 2014 | E3963

BI
O
CH

EM
IS
TR

Y
PN

A
S
PL

U
S



K9 and K14 (19, 48, 49), as is consistent with our observation of
coincident increases in phosphorylation on S10 and acetyla-
tion on K9 and K14 in cells lacking PHLPP1. The finding that
PHLPP1 localizes at promoters whose transcription is suppressed
by PHLPP but not at promoters whose transcription is not sen-
sitive to PHLPP supports the possibility that PHLPP directly
modifies histones on these promoters. Alternatively, PHLPP
could dephosphorylate the writers or erasers that modify the
code, thus modifying their function. Arguing against this notion
is the finding that the effects of PHLPP are selective for certain
promoters; one might have predicted less selectivity in the
transcriptional target genes if PHLPP broadly regulated HDACs
or histone acetyltransferases.
Our data are consistent with a model in which PHLPP serves as

an eraser of the histone code by dephosphorylating specific his-
tone residues, in turn suppressing acetylation, and thus repressing
transcription. Interestingly, it has been shown that stimulation with
growth factors increases phosphorylation of histone H3 on S10,
a modification that correlates with the transcriptional activation
of immediate-early genes that lead to proto-oncogenic induction
(50). Our data suggest that PHLPP opposes this mechanism,
contributing to its strong tumor-suppressive phenotype.

Tumor-Suppressive Function of PHLPP. Because RTKs are up-regu-
lated in diverse cancers, receptor levels often serve as markers for
tumor progression (51, 52), and designing drugs that inhibit the

EGFR has become a major focus of cancer therapeutics in recent
years (53, 54). The identification of PHLPP as a master switch to
control RTK levels is likely to be clinically relevant. Gene-expres-
sion studies have revealed that PHLPP1 and PHLPP2 expression is
reduced in glioblastoma, providing a possible mechanism for the
overexpression of EGFR in the absence of gene amplification (55).
Another EGFR family member, HER2, is frequently overexpressed
in later-stage, more metastatic breast cancers in which PHLPP1
expression is reduced (56, 57). The expression of the PHLPP iso-
zymes is reduced in many tumor types and, in some cases, decreases
as tumorigenesis progresses (57–59). Consistent with this reduction,
the ectopic expression of PHLPP in a glioblastoma and in a colon
cancer cell line significantly reduced tumor growth in vivo in
xenograft mouse models (24, 58). Whether these tumor-suppressive
effects of PHLPP are mediated directly by its regulation of growth
factor receptor levels remains to be explored. Importantly, the
dramatic effects of PHLPP on EGFR signaling place PHLPP at
center stage as a global suppressor of oncogenic pathways.

Conclusion
The foregoing data show an even broader role for PHLPP as a tu-
mor suppressor, beyond its role as a direct phosphatase for AKT,
PKC, S6K, and Mst1, by suppressing the steady-state levels of
RTKs, such as the EGFR, via its control of histone phosphorylation/
acetylation and hence transcription. Given the high up-regulation of
multipleRTKs in cancers (3), PHLPPmay provide a pharmacological
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target to suppress levels of these oncogenic proteins effectively,
particularly because the pharmacological profile of the up-
regulated receptor is unchanged. PHLPP is a more tenable
pharmacological target than most other phosphatases because of
its distinct structural composition with regulatory/targeting moie-
ties encoded in the same polypeptide as the phosphatase domain.

Materials and Methods
Phlpp1+/Δ heterozygous mice were intercrossed to isolate embryos and were
used for Phlpp1+/+ and Phlpp1−/− fibroblast production, as described pre-
viously (60). EGFR levels were analyzed in immortalized MEFs stably ex-
pressing various PHLPP constructs, mammalian cells overexpressing PHLPP1

and/or PHLPP2, or mammalian cells in which PHLPP1 and/or PHLPP2 were
silenced by siRNA. A full description of biochemical and cell biological assays
to probe EGFR function, stability, and turnover, as well as the methods used
to detect mRNA levels and perform ChIP assays, can be found in SI Materials
and Methods.
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