95 research outputs found

    Textural properties of infra red dried apple slices as affected by high power ultrasound pre-treatment

    Get PDF
    Drying is a process frequently used in food industry, often based on the use of conventional methods using heat exchange by conduction or convection. This kind of method may lead to quality loss in structure, texture and  sensory characteristics of final products. Consequently, the need for research of new drying methods arises.  One of such methods is power ultrasound aided drying. The aim of this work was to investigate the impact of  high power ultrasound pre-treatment on drying rate and textural properties of the infra red dried apple slices.  Ultrasound device working at a frequency of 24 kHz with a power capacity of 200 W was used for ultrasound  pre-treatment. The amplitudes used for ultrasonic pre-treatment were 50 and 100%. The results showed that  the use of different amplitudes of ultrasound reduces the time of drying and allows elimination of more water  from the apple slices. Usage of 50 and 100% of ultrasonic amplitude in great extent shortened the duration of  drying (up to 40%). The results showed that hardness of samples gradually increases (50% amplitude –  97.260 N; 100% of amplitude – 217.90 N) with increase of ultrasound intensity. As a result, hardness of  untreated apple slices (41.037N) was significantly lower (p < 0.05).Key words: High power ultrasound, amplitude, drying, apple

    Towards systematic and evidence-based conservation planning for western chimpanzees

    Get PDF
    As animal populations continue to decline, frequently driven by large‐scale land‐use change, there is a critical need for improved environmental planning. While data‐driven spatial planning is widely applied in conservation, as of yet it is rarely used for primates. The western chimpanzee (Pan troglodytes verus) declined by 80% within 24 years and was uplisted to Critically Endangered by the IUCN Red List of Threatened Species in 2016. To support conservation planning for western chimpanzees, we systematically identified geographic areas important for this taxon. We based our analysis on a previously published data set of modeled density distribution and on several scenarios that accounted for different spatial scales and conservation targets. Across all scenarios, typically less than one‐third of areas we identified as important are currently designated as high‐level protected areas (i.e., national park or IUCN category I or II). For example, in the scenario for protecting 50% of all chimpanzees remaining in West Africa (i.e., approximately 26,500 chimpanzees), an area of approximately 60,000 km2 was selected (i.e., approximately 12% of the geographic range), only 24% of which is currently designated as protected areas. The derived maps can be used to inform the geographic prioritization of conservation interventions, including protected area expansion, “no‐go‐zones” for industry and infrastructure, and conservation sites outside the protected area network. Environmental guidelines by major institutions funding infrastructure and resource extraction projects explicitly require corporations to minimize the negative impact on great apes. Therefore, our results can inform avoidance and mitigation measures during the planning phases of such projects. This study was designed to inform future stakeholder consultation processes that could ultimately integrate the conservation of western chimpanzees with national land‐use priorities. Our approach may help in promoting similar work for other primate taxa to inform systematic conservation planning in times of growing threats

    Chemical Cues Influence Pupation Behavior of Drosophila simulans and Drosophila buzzatii in Nature and in the Laboratory

    Get PDF
    In the wild, larvae of several species of Drosophila develop in heterogeneous and rapidly changing environments sharing resources as food and space. In this scenario, sensory systems contribute to detect, localize and recognize congeners and heterospecifics, and provide information about the availability of food and chemical features of environments where animals live. We investigated the behavior of D. simulans and D. buzzatii larvae to chemicals emitted by conspecific and heterospecific larvae. Our goal was to understand the role of these substances in the selection of pupation sites in the two species that cohabit within decaying prickly pear fruits (Opuntia ficus-indica). In these breeding sites, larvae of D. simulans and D. buzzatii detect larvae of the other species changing their pupation site preferences. Larvae of the two species pupated in the part of the fruit containing no or few heterospecifics, and spent a longer time in/on spots marked by conspecifics rather than heterospecifics. In contrast, larvae of the two species reared in isolation from conspecifics pupated randomly over the substrate and spent a similar amount of time on spots marked by conspecifics and by heterospecifics. Our results indicate that early chemically-based experience with conspecific larvae is critical for the selection of the pupation sites in D. simulans and D. buzzatii, and that pupation site preferences of Drosophila larvae depend on species-specific chemical cues. These preferences can be modulate by the presence of larvae of the same or another species

    The macronutrient composition of wild and cultivated plant foods of West African chimpanzees (Pan troglodytes verus ) inhabiting an anthropogenic landscape

    Get PDF
    Agricultural expansion encroaches on tropical forests and primates in such landscapes frequently incorporate crops into their diet. Understanding the nutritional drivers behind crop‐foraging can help inform conservation efforts to improve human‐primate coexistence. This study builds on existing knowledge of primate diets in anthropogenic landscapes by estimating the macronutrient content of 24 wild and 11 cultivated foods (90.5% of food intake) consumed by chimpanzees (Pan troglodytes verus) at Bossou, Guinea, West Africa. We also compared the macronutrient composition of Bossou crops to published macronutrient measures of crops from Bulindi, Uganda, East Africa. The composition of wild fruits, leaves, and pith were consistent with previous reports for primate diets. Cultivated fruits were higher in carbohydrates and lower in insoluble fiber than wild fruits, while wild fruits were higher in protein. Macronutrient content of cultivated pith fell within the ranges of consumed wild pith. Oil palm food parts were relatively rich in carbohydrates, protein, lipids, and/or fermentable fiber, adding support for the nutritional importance of the oil palm for West African chimpanzees. We found no differences in the composition of cultivated fruits between Bossou and Bulindi, suggesting that macronutrient content alone does not explain differences in crop selection. Our results build on the current understanding of chimpanzee feeding ecology within forest‐agricultural mosaics and provide additional support for the assumption that crops offer primates energetic benefits over wild foods

    Apple polyphenols in human and animal health*

    Get PDF
    Apples contain substantial amounts of polyphenols, and diverse phenolics mainly flavonoids and phenolic acids, have been identified in their flesh and skins. This work aimed to analyze the overall landscape of the research literature published to date on apple phenolic compounds in the context of human and animal health. The Web of Science Core Collection electronic database was queried with (apple* polyphenol*) AND (health* OR illness* OR disease* OR medic* OR pharma*) to identify relevant papers covering these words and their derivatives in the titles, abstracts, and keywords. The resulted 890 papers were bibliometrically analyzed. The VOSviewer software was utilized to produce term maps that illustrate how the frequent phrases fared in terms of publication and citation data. The apple polyphenol papers received global contributions, particularly from China, Italy, the United States, Spain, and Germany. Examples of frequently mentioned chemicals/chemical classes are quercetin, anthocyanin, catechin, epicatechin, and flavonol, while examples of frequently mentioned medical conditions are cardiovascular disease, atherosclerosis, diabetes, Alzheimers disease, and obesity. The potential health benefits of apple polyphenols on humans and animals are diverse and warrant further study.Authors acknowledge the support from The National Centre for Research and Development (NCBR) of Poland (project number POIR.01.01.01-00-0593/18).info:eu-repo/semantics/publishedVersio

    Lycopene: total-scale literature landscape analysis of a valuable nutraceutical with numerous potential applications in the promotion of human and animal health

    Get PDF
    Lycopene intake from tomatoes and other food sources has multiple potential health benefits. This report aimed to evaluate the current research literature on lycopene concerning human and animal health. The electronic Web of Science Core Collection database was searched with (lycopene*) AND (health* OR illness* OR disease* OR medic* OR pharma* OR drug* OR therap*). The resulted 3972 papers were analyzed with the aid of bibliometric software. Besides the United States, the lycopene papers received global contributions, particularly from China, Italy, India, and Spain. Examples of frequently mentioned chemicals/chemical classes were carotenoid, beta carotene, alpha carotene, beta cryptoxanthin, and alpha tocopherol. Examples of frequently mentioned medical conditions were prostate cancer, cardiovascular disease, and obesity. Published scientific articles reveal the diverse potential of lycopene in prompting human and animal health, and the knowledge on the bioactivities of this phytoche(undefined)info:eu-repo/semantics/publishedVersio

    Resistance of African tropical forests to an extreme climate anomaly.

    Get PDF
    The responses of tropical forests to environmental change are critical uncertainties in predicting the future impacts of climate change. The positive phase of the 2015-2016 El Niño Southern Oscillation resulted in unprecedented heat and low precipitation in the tropics with substantial impacts on the global carbon cycle. The role of African tropical forests is uncertain as their responses to short-term drought and temperature anomalies have yet to be determined using on-the-ground measurements. African tropical forests may be particularly sensitive because they exist in relatively dry conditions compared with Amazonian or Asian forests, or they may be more resistant because of an abundance of drought-adapted species. Here, we report responses of structurally intact old-growth lowland tropical forests inventoried within the African Tropical Rainforest Observatory Network (AfriTRON). We use 100 long-term inventory plots from six countries each measured at least twice prior to and once following the 2015-2016 El Niño event. These plots experienced the highest temperatures and driest conditions on record. The record temperature did not significantly reduce carbon gains from tree growth or significantly increase carbon losses from tree mortality, but the record drought did significantly decrease net carbon uptake. Overall, the long-term biomass increase of these forests was reduced due to the El Niño event, but these plots remained a live biomass carbon sink (0.51 ± 0.40 Mg C ha-1 y-1) despite extreme environmental conditions. Our analyses, while limited to African tropical forests, suggest they may be more resistant to climatic extremes than Amazonian and Asian forests

    Congo Basin peatlands: threats and conservation priorities

    Get PDF
    The recent publication of the first spatially explicit map of peatlands in the Cuvette Centrale, central Congo Basin, reveals it to be the most extensive tropical peatland complex, at ca. 145,500 km2. With an estimated 30.6 Pg of carbon stored in these peatlands, there are now questions about whether these carbon stocks are under threat and, if so, what can be done to protect them. Here, we analyse the potential threats to Congo Basin peat carbon stocks and identify knowledge gaps in relation to these threats, and to how the peatland systems might respond. Climate change emerges as a particularly pressing concern, given its potential to destabilise carbon stocks across the whole area. Socio-economic developments are increasing across central Africa and, whilst much of the peatland area is protected on paper by some form of conservation designation, the potential exists for hydrocarbon exploration, logging, plantations and other forms of disturbance to significantly damage the peatland ecosystems. The low level of human intervention at present suggests that the opportunity still exists to protect the peatlands in a largely intact state, possibly drawing on climate change mitigation funding, which can be used not only to protect the peat carbon pool but also to improve the livelihoods of people living in and around these peatlands

    Predicting range shifts of African apes under global change scenarios

    Get PDF
    Aim: Modelling African great ape distribution has until now focused on current or past conditions, while future scenarios remain scarcely explored. Using an ensemble forecasting approach, we predicted changes in taxon-specific distribution under future scenarios of climate, land use and human populations for (1) areas outside protected areas (PAs) only (assuming complete management effectiveness of PAs), (2) the entire study region and (3) interspecies range overlap. Location: Tropical Africa. Methods: We compiled occurrence data (n = 5,203) on African apes from the IUCN A.P.E.S. database and extracted relevant climate-, habitat- and human-related predictors representing current and future (2050) conditions to predict taxon-specific range change under a best- and a worst-case scenario, using ensemble forecasting. Results The predictive performance of the models varied across taxa. Synergistic interactions between predictors are shaping African ape distribution, particularly human-related variables. On average across taxa, a range decline of 50% is expected outside PAs under the best scenario if no dispersal occurs (61% in worst scenario). Otherwise, an 85% range reduction is predicted to occur across study regions (94% worst). However, range gains are predicted outside PAs if dispersal occurs (52% best, 21% worst), with a slight increase in gains expected across study regions (66% best, 24% worst). Moreover, more than half of range losses and gains are predicted to occur outside PAs where interspecific ranges overlap. Main Conclusions: Massive range decline is expected by 2050, but range gain is uncertain as African apes will not be able to occupy these new areas immediately due to their limited dispersal capacity, migration lag and ecological constraints. Given that most future range changes are predicted outside PAs, Africa's current PA network is likely to be insufficient for preserving suitable habitats and maintaining connected ape populations. Thus, conservation planners urgently need to integrate land use planning and climate change mitigation measures at all decision-making levels both in range countries and abroad

    Activity and Habitat Use of Chimpanzees (Pan troglodytes verus) in the Anthropogenic Landscape of Bossou, Guinea, West Africa

    Get PDF
    Many primate populations inhabit anthropogenic landscapes. Understanding their long-term ability to persist in such environments and associated real and perceived risks for both primates and people is essential for effective conservation planning. Primates in forest–agricultural mosaics often consume cultivars to supplement their diet, leading to potentially negative encounters with farmers. When crossing roads, primates also face the risk of encounters with people and collision with vehicles. Chimpanzees (Pan troglodytes verus) in Bossou, Guinea, West Africa, face such risks regularly. In this study, we aimed to examine their activity budget across habitat types and the influence of anthropogenic risks associated with cultivated fields, roads, and paths on their foraging behavior in noncultivated habitat. We conducted 6-h morning or afternoon follows daily from April 2012 to March 2013. Chimpanzees preferentially used forest habitat types for traveling and resting and highly disturbed habitat types for socializing. Wild fruit and crop availability influenced seasonal habitat use for foraging. Overall, chimpanzees preferred mature forest for all activities. They showed a significant preference for foraging at >200 m from cultivated fields compared to 0–100 m and 101–200 m, with no effect of habitat type or season, suggesting an influence of associated risk. Nevertheless, the chimpanzees did not actively avoid foraging close to roads and paths. Our study reveals chimpanzee reliance on different habitat types and the influence of human-induced pressures on their activities. Such information is critical for the establishment of effective land use management strategies in anthropogenic landscapes
    • 

    corecore