40 research outputs found
Supply network science: Emergence of a new perspective on a classical field.
Supply networks emerge as companies procure goods from one another to produce their own products. Due to a chronic lack of data, studies on these emergent structures have long focussed on local neighbourhoods, assuming simple, chain-like structures. However, studies conducted since 2001 have shown that supply chains are indeed complex networks that exhibit similar organisational patterns to other network types. In this paper, we present a critical review of theoretical and model based studies which conceptualise supply chains from a network science perspective, showing that empirical data do not always support theoretical models that were developed, and argue that different industrial settings may present different characteristics. Consequently, a need that arises is the development and reconciliation of interpretation across different supply network layers such as contractual relations, material flow, financial links, and co-patenting, as these different projections tend to remain in disciplinary siloes. Other gaps include a lack of null models that show whether the observed properties are meaningful, a lack of dynamical models that can inform how layers evolve and adopt to changes, and a lack of studies that investigate how local decisions enable emergent outcomes. We conclude by asking the network science community to help bridge these gaps by engaging with this important area of research
Simulating rewetting events in intermittent rivers and ephemeral streams: A global analysis of leached nutrients and organic matter
Climate change and human pressures are changing the global distribution and the ex‐
tent of intermittent rivers and ephemeral streams (IRES), which comprise half of the
global river network area. IRES are characterized by periods of flow cessation, during
which channel substrates accumulate and undergo physico‐chemical changes (precon‐
ditioning), and periods of flow resumption, when these substrates are rewetted and
release pulses of dissolved nutrients and organic matter (OM). However, there are no
estimates of the amounts and quality of leached substances, nor is there information
on the underlying environmental constraints operating at the global scale. We experi‐
mentally simulated, under standard laboratory conditions, rewetting of leaves, river‐
bed sediments, and epilithic biofilms collected during the dry phase across 205 IRES
from five major climate zones. We determined the amounts and qualitative character‐
istics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds.
In addition, we evaluated the variance in leachate characteristics in relation to selected
environmental variables and substrate characteristics. We found that sediments, due
to their large quantities within riverbeds, contribute most to the overall flux of dis‐
solved substances during rewetting events (56%–98%), and that flux rates distinctly
differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contrib‐
uted most to the areal fluxes. The largest amounts of leached substances were found
in the continental climate zone, coinciding with the lowest potential bioavailability of
the leached OM. The opposite pattern was found in the arid zone. Environmental vari‐
ables expected to be modified under climate change (i.e. potential evapotranspiration,
aridity, dry period duration, land use) were correlated with the amount of leached sub‐
stances, with the strongest relationship found for sediments. These results show that
the role of IRES should be accounted for in global biogeochemical cycles, especially
because prevalence of IRES will increase due to increasing severity of drying event
Sediment respiration pulses in intermittent rivers and ephemeral streams
Intermittent rivers and ephemeral streams (IRES) may represent over half the global stream network, but their contribution to respiration and carbon dioxide (CO2) emissions is largely undetermined. In particular, little is known about the variability and drivers of respiration in IRES sediments upon rewetting, which could result in large pulses of CO2. We present a global study examining sediments from 200 dry IRES reaches spanning multiple biomes. Results from standardized assays show that mean respiration increased 32–66‐fold upon sediment rewetting. Structural equation modelling indicates that this response was driven by sediment texture and organic matter quantity and quality, which, in turn, were influenced by climate, land use and riparian plant cover. Our estimates suggest that respiration pulses resulting from rewetting of IRES sediments could contribute significantly to annual CO2 emissions from the global stream network, with a single respiration pulse potentially increasing emission by 0.2–0.7%. As the spatial and temporal extent of IRES increases globally, our results highlight the importance of recognizing the influence of wetting‐drying cycles on respiration and CO2 emissions in stream networks
A global analysis of terrestrial plant litter dynamics in non-perennial waterways
Perennial rivers and streams make a disproportionate contribution to global carbon (C) cycling. However, the contribution of intermittent rivers and ephemeral streams (IRES), which sometimes cease to flow and can dry completely, is largely ignored although they represent over half the global river network. Substantial amounts of terrestrial plant litter (TPL) accumulate in dry riverbeds and, upon rewetting, this material can undergo rapid microbial processing. We present the results of a global research collaboration that collected and analysed TPL from 212 dry riverbeds across major environmental gradients and climate zones. We assessed litter decomposability by quantifying the litter carbon-to-nitrogen ratio and oxygen (O2) consumption in standardized assays and estimated the potential short-term CO2 emissions during rewetting events. Aridity, cover of riparian vegetation, channel width and dry-phase duration explained most variability in the quantity and decomposability of plant litter in IRES. Our estimates indicate that a single pulse of CO2 emission upon litter rewetting contributes up to 10% of the daily CO2 emission from perennial rivers and stream, particularly in temperate climates. This indicates that the contributions of IRES should be included in global C-cycling assessments
Roadmap to Self-Serving Assets in Civil Aerospace
Organised by: Cranfield UniversityThe “intelligent object” paradigm first occurred in holonic manufacturing, where objects managed their
production. The “self-serving asset” is a further evolution of those early concepts from manufacturing to
usage phase. The usage phase bestows a different set of requirements including maximisation of the
asset’s life-in-service and benefits to the asset’s stakeholders. Addressing these requirements with a selfserving
asset may lead to more streamlined decision-making in service operations, reduce erroneous or
suboptimal decisions, and enable condition-based maintenance. We present a future direction for service
systems by considering self-serving assets in the aerospace industry, and outline a technology roadmap for
the transformation.Mori Seiki – The Machine Tool Compan
Linking product and machine network structure using nested pattern analysis
The structure and variety of products that a company produces have a direct influence on the way a manufacturing system is designed. The implications of changes in the product variety or structure on the manufacturing system and resulting performance differences need to be considered by designers before introducing or changing products. In this paper, we suggest a measure derived from community ecology called "nestedness" to assess how changes in the product variety or structure can affect the operation-machine network of a manufacturing system in terms of its performance robustness. We define performance robustness as the manufacturing system's ability to keep a steady performance even in the face of disruptions such as product variety changes. We measure nestedness in an exemplary case study on a data set from a tool manufacturing job-shop and find the matrix of the network to be nested. The nested pattern means that there is a systematic relationship between operations and machines which results in performance robustness: if machines break-down, most other machines can be substituted. Similarly, if products are taken out from the portfolio, machines are still needed for the operations of other products. As such, our study is a first in examining the relationship between manufacturing system structure and performance robustness using interdisciplinary knowledge transfer with network science. ©2014 Elsevier B.V. This is an open access article under the CC BY-NC-ND license
Analysing the evolution of aerospace ecosystem development
Aerospace manufacturing industry is predicted to continue growing. Rising demand is triggering the current global aerospace ecosystem to evolve and adapt to challenges never faced before. New players into the aerospace manufacturing industry and the development of new ecosystems are evidencing its evolution. Understanding how the aerospace ecosystem has evolved is thus essential to prepare optimal conditions to nurture its growth. Recent studies have successfully combined economics and network science methods to map, analyse and predict the evolution of industrial ecosystems. In comparison to previous studies which apply network science-based methodologies to macro-economic research, this paper uses these methods to analyse the evolution of a particular industrial ecosystem, namely the aerospace sector. In particular, we develop bipartite country-product networks based on trade data over 25 years, to identify patterns and similarities in the evolution of developed aerospace manufacturing countries ecosystems. The analysis is elaborated at a macroscopic (network) and microscopic (nodes) levels. Motivated by studies in ecological networks, we use nestedness analysis to find patterns depicting the distribution and evolution of exported products across ecosystems. Our analysis reveals that developed ecosystems tend to become more analogous, as countries lean towards having a revealed comparative advantage (RCA) in the same group of products. Countries also tend to become more nested in their aerospace product space as they start developing a higher RCA. It is revealed that although countries develop an advantage on unique products, they also tend to increase competition with each other. Further analysis shows that manufactured products have a stronger correlation to an aerospace ecosystem than primary products; and in particular, the automotive sector shows the highest correlation with positive aerospace sector evolution. Competition between countries with well-developed aerospace ecosystems tends to centre on automotive parts, general industrial machinery, power generating machinery and equipment, and chemical materials and products
Key enablers for the evolution of aerospace ecosystems
The aerospace industry is experiencing an unprecedented scenario. The air travel drifted from years of constant growth and positive expectations to a place where the uncertainty is the most predominant distinctive. Consequently, the aerospace ecosystem needs to adapt to cope with challenges never faced before. Understanding the evolution of the aerospace ecosystem is thus essential to foster its progression. This research aims at the identification and categorisation of key enablers that have been linked to the growth of aerospace ecosystems. To this extent, key enablers are first identified and then categorised using interpretive structural modelling (ISM) and cross-impact matrix multiplication applied to classification (MICMAC) methodologies. An analysis is elaborated for a developed aerospace ecosystem, the United Kingdom, and an emergent aerospace ecosystem, Mexico. Results evidence a contrasting categorisation of key enablers among both ecosystems. On the other hand, the automotive ecosystem and geopolitical factors are considered as underpinning enablers for both aerospace ecosystems evolution