1,154 research outputs found
Statins do not directly inhibit the activity of major epigenetic modifying enzymes
The potential anticancer effects of statins—a widely used class of cholesterol loweringdrugs—has generated significant interest, as has the use of epigenetic modifying drugs such asHDAC and DNMT inhibitors. We set out to investigate the effect of statin drugs on epigeneticmodifications in multiple cell lines, including hepatocellular carcinoma, breast carcinoma, leukemicmacrophages, cervical adenocarcinoma, and insulin-secreting cells, as well as liver extracts fromstatin-treated C57B1/6J mice. Cells or cell extracts were treated with statins and with establishedepigenetic modulators, and HDAC, HAT, and DNMT activities were quantified. We also examinedhistone acetylation by immunoblotting. Statins altered neither HDAC nor HAT activity. Accordingly,acetylation of histones H3 and H4 was unchanged with statin treatment. However, statins tended toincrease DNMT activity. These results indicate that direct inhibition of the major classes of epigeneticmodifying enzymes, as previously reported elsewhere, is unlikely to contribute to any anticancereffects of statins. This study concerned global effects on epigenetic enzyme activities and histoneacetylation; whether statins influence epigenetic modifications in certain genomic regions, cannot beruled out and remains to be investigated
Exogenous spatial precuing reliably modulates object processing but not object substitution masking
Object substitution masking (OSM) is used in behavioral and imaging studies to investigate processes associated with the formation of a conscious percept. Reportedly, OSM occurs only when visual attention is diffusely spread over a search display or focused away from the target location. Indeed, the presumed role of spatial attention is central to theoretical accounts of OSM and of visual processing more generally (Di Lollo, Enns, & Rensink, Journal of Experimental Psychology: General 129:481–507, 2000). We report a series of five experiments in which valid spatial precuing is shown to enhance the ability of participants to accurately report a target but, in most cases, without affecting OSM. In only one experiment (Experiment 5) was a significant effect of precuing observed on masking. This is in contrast to the reliable effect shown across all five experiments in which precuing improved overall performance. The results are convergent with recent findings from Argyropoulos, Gellatly, and Pilling (Journal of Experimental Psychology: Human Perception and Performance 39:646–661, 2013), which show that OSM is independent of the number of distractor items in a display. Our results demonstrate that OSM can operate independently of focal attention. Previous claims of the strong interrelationship between OSM and spatial attention are likely to have arisen from ceiling or floor artifacts that restricted measurable performance
Valence Fluctuations Revealed by Magnetic Field Scan: Comparison with Experiments in YbXCu_4 (X=In, Ag, Cd) and CeYIn_5 (Y=Ir, Rh)
The mechanism of how critical end points of the first-order valence
transitions (FOVT) are controlled by a magnetic field is discussed. We
demonstrate that the critical temperature is suppressed to be a quantum
critical point (QCP) by a magnetic field. This results explain the field
dependence of the isostructural FOVT observed in Ce metal and YbInCu_4.
Magnetic field scan can lead to reenter in a critical valence fluctuation
region. Even in the intermediate-valence materials, the QCP is induced by
applying a magnetic field, at which the magnetic susceptibility also diverges.
The driving force of the field-induced QCP is shown to be a cooperative
phenomenon of the Zeeman effect and the Kondo effect, which creates a distinct
energy scale from the Kondo temperature. The key concept is that the closeness
to the QCP of the FOVT is capital in understanding Ce- and Yb-based heavy
fermions. It explains the peculiar magnetic and transport responses in CeYIn_5
(Y=Ir, Rh) and metamagnetic transition in YbXCu_4 for X=In as well as the sharp
contrast between X=Ag and Cd.Comment: 14 pages, 9 figures, OPEN SELECT in J. Phys. Soc. Jp
Recommended from our members
Biases in the perceived timing of perisaccadic perceptual and motor events
Subjects typically experience the temporal interval immediately following a saccade as longer than a comparable control interval. One explanation of this effect is that the brain antedates the perceptual onset of a saccade target to around the time of saccade initiation. This could explain the apparent continuity of visual perception across eye movements. Thisantedating account was tested in three experiments in which subjects made saccades of differing extents and then judged either the duration or the temporal order of key events. Postsaccadic stimuli underwent subjective temporal lengthening and had early perceived onsets. A temporally advanced awareness of saccade completion was also found, independently of antedating effects. These results provide convergent evidence supporting antedating and differentiating it from other temporal biases
The Nile perch invasion in Lake Victoria: cause or consequence of the haplochromine decline?
We review alternative hypotheses and associated mechanisms to explain Lake Victoria’s Nile perch takeover and concurrent reduction in haplochromines through a (re)analysis of long term climate, limnological and stock observations in comparison with size-spectrum model predictions of co-existence, extinction and demographic change. The empirical observations are in agreement with the outcomes of the model containing two interacting species with life-histories matching Nile perch and a generalized haplochromine. The dynamic interactions may have depended on size related differences in early juvenile mortality: mouth-brooding haplochromines escape predation mortality in early life stages, unlike Nile perch that have miniscule planktonic eggs and larvae. In our model predation on the latter by planktivorous haplochromine fry act as a stabilizing factor for co-existence,
but external mortality on the haplochromines would disrupt this balance in favor of Nile perch. To explain the observed switch, mortality on haplochromines would need to be much higher than the fishing mortality that can be realistically re-constructed from observations. Abrupt concomitant changes in algal and zooplankton composition, decreased water column transparency, and widespread hypoxia from increased eutrophication most likely caused haplochromine biomass decline. We hypothesize that the shift to Nile perch was a consequence of an externally caused, climate triggered, decrease in haplochromine biomass and associated recruitment failure rather than a direct cause of the introduction
Search for the Higgs boson in events with missing transverse energy and b quark jets produced in proton-antiproton collisions at s**(1/2)=1.96 TeV
We search for the standard model Higgs boson produced in association with an
electroweak vector boson in events with no identified charged leptons, large
imbalance in transverse momentum, and two jets where at least one contains a
secondary vertex consistent with the decay of b hadrons. We use ~1 fb-1
integrated luminosity of proton-antiproton collisions at s**(1/2)=1.96 TeV
recorded by the CDF II experiment at the Tevatron. We find 268 (16) single
(double) b-tagged candidate events, where 248 +/- 43 (14.4 +/- 2.7) are
expected from standard model background processes. We place 95% confidence
level upper limits on the Higgs boson production cross section for several
Higgs boson masses ranging from 110 GeV/c2 to 140 GeV/c2. For a mass of 115
GeV/c2 the observed (expected) limit is 20.4 (14.2) times the standard model
prediction.Comment: 8 pages, 2 figures, submitted to Phys. Rev. Let
Measurement of Ratios of Fragmentation Fractions for Bottom Hadrons in p-pbar Collisions at sqrt{s}=1.96 TeV
This paper describes the first measurement of b-quark fragmentation fractions
into bottom hadrons in Run II of the Tevatron Collider at Fermilab. The result
is based on a 360 pb-1 sample of data collected with the CDF II detector in
p-pbar collisions at sqrt{s}=1.96 TeV. Semileptonic decays of B0, B+, and B_s
mesons, as well as Lambda_b baryons, are reconstructed. For an effective bottom
hadron p_T threshold of 7 GeV/c, the fragmentation fractions are measured to be
f_u/f_d=1.054 +/- 0.018 (stat) +0.025-0.045(sys) +/- 0.058 (Br),
f_s/(f_u+f_d)=0.160 +/- 0.005 (stat) +0.011-0.010 (sys) +0.057-0.034 (Br), and
f_{Lambda_b}/(f_u+f_d)=0.281\pm0.012 (stat) +0.058-0.056 (sys) +0.128-0.086
(Br), where the uncertainty (Br) is due to uncertainties on measured branching
ratios. The value of f_s/(f_u+f_d) agrees within one standard deviation with
previous CDF measurements and the world average of this quantity, which is
dominated by LEP measurements. However, the ratio f_{Lambda_b}/(f_u+f_d) is
approximately twice the value previously measured at LEP. The approximately 2
sigma discrepancy is examined in terms of kinematic differences between the two
production environments.Comment: Submitted to PRD, 54 pages, 53 plot
Search for Pair Production of Scalar Top Quarks Decaying to a tau Lepton and a b Quark in ppbar Collisions at sqrt{s}=1.96 TeV
We search for pair production of supersymmetric top quarks (~t_1), followed
by R-parity violating decay ~t_1 -> tau b with a branching ratio beta, using
322 pb^-1 of ppbar collisions at sqrt{s}=1.96 TeV collected by the CDF II
detector at Fermilab. Two candidate events pass our final selection criteria,
consistent with the standard model expectation. We set upper limits on the
cross section sigma(~t_1 ~tbar_1)*beta^2 as a function of the stop mass
m(~t_1). Assuming beta=1, we set a 95% confidence level limit m(~t_1)>153
GeV/c^2. The limits are also applicable to the case of a third generation
scalar leptoquark (LQ_3) decaying LQ_3 -> tau b.Comment: 7 pages, 2 eps figure
Forward-Backward Asymmetry in Top Quark Production in ppbar Collisions at sqrt{s}=1.96 TeV
Reconstructable final state kinematics and charge assignment in the reaction
ppbar->ttbar allows tests of discrete strong interaction symmetries at high
energy. We define frame dependent forward-backward asymmetries for the outgoing
top quark in both the ppbar and ttbar rest frames, correct for experimental
distortions, and derive values at the parton-level. Using 1.9/fb of ppbar
collisions at sqrt{s}=1.96 TeV recorded with the CDF II detector at the
Fermilab Tevatron, we measure forward-backward top quark production asymmetries
in the ppbar and ttbar rest frames of A_{FB,pp} = 0.17 +- 0.08 and A_{FB,tt} =
0.24 +- 0.14.Comment: 7 pages, 2 figures, submitted to Phys.Rev.Lett, corrected references
and change of tex
Studies of di-jet survival and surface emission bias in Au+Au collisions via angular correlations with respect to back-to-back leading hadrons
We report first results from an analysis based on a new multi-hadron
correlation technique, exploring jet-medium interactions and di-jet surface
emission bias at RHIC. Pairs of back-to-back high transverse momentum hadrons
are used for triggers to study associated hadron distributions. In contrast
with two- and three-particle correlations with a single trigger with similar
kinematic selections, the associated hadron distribution of both trigger sides
reveals no modification in either relative pseudo-rapidity or relative
azimuthal angle from d+Au to central Au+Au collisions. We determine associated
hadron yields and spectra as well as production rates for such correlated
back-to-back triggers to gain additional insights on medium properties.Comment: By the STAR Collaboration. 6 pages, 2 figure
- …