20 research outputs found

    Trait Mindfulness Is Associated With Less Amyloid, Tau, and Cognitive Decline in Individuals at Risk for Alzheimer's Disease

    Get PDF
    BACKGROUND: Mindfulness, defined as nonjudgmental awareness of the present moment, has been associated with an array of mental and physical health benefits. Mindfulness may also represent a protective factor for Alzheimer's disease (AD). Here, we tested the potential protective effect of trait mindfulness on cognitive decline and AD pathology in older adults at risk for AD dementia. METHODS: Measures of trait mindfulness, longitudinal cognitive assessments, and amyloid-β (Aβ) and tau positron emission tomography scans were collected in 261 nondemented older adults with a family history of AD dementia from the PREVENT-AD (Pre-symptomatic Evaluation of Experimental or Novel Treatments for AD) observational cohort study. Multivariate partial least squares analyses were used to examine relationships between combinations of different facets of trait mindfulness and 1) cognitive decline, 2) Aβ, and 3) tau. RESULTS: Higher levels of mindful nonjudgment, describing, and nonreactivity were associated with less cognitive decline in attention, global cognition, and immediate and delayed memory. Higher levels of mindful nonjudgment and nonreactivity were related to less Aβ positron emission tomography signal in bilateral medial and lateral temporoparietal and frontal regions. Higher levels of mindful acting with awareness, describing, nonjudgment, and nonreactivity were associated with less tau positron emission tomography signal in bilateral medial and lateral temporal regions. CONCLUSIONS: Trait mindfulness was associated with less cognitive decline and less Aβ and tau in the brain in older adults at risk for AD dementia. Longitudinal studies examining the temporal relationship between trait mindfulness and AD markers, along with mindfulness intervention studies, will be important for further clarifying the potential protective benefits of mindfulness on AD risk

    Longitudinal blood biomarker trajectories in preclinical Alzheimer's disease

    Get PDF
    INTRODUCTION: Plasma biomarkers are altered years prior to Alzheimer's disease (AD) clinical onset. METHODS: We measured longitudinal changes in plasma amyloid-beta (Aβ)42/40 ratio, pTau181, pTau231, neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP) in a cohort of older adults at risk of AD (n = 373 total, n = 229 with Aβ and tau positron emission tomography [PET] scans) considering genetic and demographic factors as possible modifiers of these markers' progression. RESULTS: Aβ42/40 ratio concentrations decreased, while NfL and GFAP values increased over the 4-year follow-up. Apolipoprotein E (APOE) ε4 carriers showed faster increase in plasma pTau181 than non-carriers. Older individuals showed a faster increase in plasma NfL, and females showed a faster increase in plasma GFAP values. In the PET subsample, individuals both Aβ-PET and tau-PET positive showed faster plasma pTau181 and GFAP increase compared to PET-negative individuals. DISCUSSION: Plasma markers can track biological change over time, with plasma pTau181 and GFAP markers showing longitudinal change in individuals with preclinical AD. HIGHLIGHTS: Longitudinal increase of plasma pTau181 and glial fibrillary acidic protein (GFAP) can be measured in the preclinical phase of AD. Apolipoprotein E ε4 carriers experience faster increase in plasma pTau181 over time than non-carriers. Female sex showed accelerated increase in plasma GFAP over time compared to males. Aβ42/40 and pTau231 values are already abnormal at baseline in individuals with both amyloid and tau PET burden

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Five insights from the Global Burden of Disease Study 2019

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a rules-based synthesis of the available evidence on levels and trends in health outcomes, a diverse set of risk factors, and health system responses. GBD 2019 covered 204 countries and territories, as well as first administrative level disaggregations for 22 countries, from 1990 to 2019. Because GBD is highly standardised and comprehensive, spanning both fatal and non-fatal outcomes, and uses a mutually exclusive and collectively exhaustive list of hierarchical disease and injury causes, the study provides a powerful basis for detailed and broad insights on global health trends and emerging challenges. GBD 2019 incorporates data from 281 586 sources and provides more than 3.5 billion estimates of health outcome and health system measures of interest for global, national, and subnational policy dialogue. All GBD estimates are publicly available and adhere to the Guidelines on Accurate and Transparent Health Estimate Reporting. From this vast amount of information, five key insights that are important for health, social, and economic development strategies have been distilled. These insights are subject to the many limitations outlined in each of the component GBD capstone papers.Peer reviewe

    Plasma p-tau231, p-tau181, PET biomarkers and cognitive change in older adults

    No full text
    OBJECTIVE: To evaluate novel plasma p-tau231, p-tau181 as well as Aβ40 and Aβ42 assays as indicators of tau and Aβ pathologies measured with positron emission tomography (PET), and their association with cognitive change, in cognitively unimpaired older adults. METHODS: In a cohort of 244 older adults at risk of AD owing to a family history of AD dementia, we measured single molecule array (Simoa)-based plasma tau biomarkers (p-tau231, p-tau181), Aβ40 and Aβ42 with immunoprecipitation mass spectrometry, and Simoa NfL. A subset of 129 participants underwent amyloid-β (18 F-NAV4694) and tau (18 F-flortaucipir) PET assessments. We investigated plasma biomarker associations with Aβ and tau PET at the global and voxel level and tested plasma biomarker combinations for improved detection of Aβ-PET positivity. We also investigated associations with 8-year cognitive change. RESULTS: Plasma p-tau biomarkers correlated with flortaucipir binding in medial temporal, parietal and inferior temporal regions. P-tau231 showed further associations in lateral parietal and occipital cortices. Plasma Aβ42/40 explained more variance in global Aβ-PET binding than Aβ42 alone. P-tau231 also showed strong and widespread associations with cortical Aβ-PET binding. Combining Aβ42/40 with p-tau231 or p-tau181 allowed for good distinction between Aβ-negative and -positive participants (AUC range 0.81-0.86). Individuals with low plasma Aβ42/40 and high p-tau experienced faster cognitive decline. INTERPRETATION: Plasma p-tau231 showed more robust associations with PET biomarkers than p-tau181 in pre-symptomatic individuals. The combination of p-tau and Aβ42/40 biomarkers detected early AD pathology and cognitive decline. Such markers could be used as pre-screening tools to reduce the cost of prevention trials. This article is protected by copyright. All rights reserved

    Accelerated functional brain aging in pre-clinical familial Alzheimer's disease.

    Get PDF
    Resting state functional connectivity (rs-fMRI) is impaired early in persons who subsequently develop Alzheimer's disease (AD) dementia. This impairment may be leveraged to aid investigation of the pre-clinical phase of AD. We developed a model that predicts brain age from resting state (rs)-fMRI data, and assessed whether genetic determinants of AD, as well as beta-amyloid (Aβ) pathology, can accelerate brain aging. Using data from 1340 cognitively unimpaired participants between 18-94 years of age from multiple sites, we showed that topological properties of graphs constructed from rs-fMRI can predict chronological age across the lifespan. Application of our predictive model to the context of pre-clinical AD revealed that the pre-symptomatic phase of autosomal dominant AD includes acceleration of functional brain aging. This association was stronger in individuals having significant Aβ pathology
    corecore