49 research outputs found

    2019 update of the WSES guidelines for management of Clostridioides (Clostridium) difficile infection in surgical patients

    Get PDF
    In the last three decades, Clostridium difficile infection (CDI) has increased in incidence and severity in many countries worldwide. The increase in CDI incidence has been particularly apparent among surgical patients. Therefore, prevention of CDI and optimization of management in the surgical patient are paramount. An international multidisciplinary panel of experts from the World Society of Emergency Surgery (WSES) updated its guidelines for management of CDI in surgical patients according to the most recent available literature. The update includes recent changes introduced in the management of this infection.Peer reviewe

    WSES guidelines for management of Clostridium difficile infection in surgical patients

    Get PDF
    In the last two decades there have been dramatic changes in the epidemiology of Clostridium difficile infection (CDI), with increases in incidence and severity of disease in many countries worldwide. The incidence of CDI has also increased in surgical patients. Optimization of management of C difficile, has therefore become increasingly urgent. An international multidisciplinary panel of experts prepared evidenced-based World Society of Emergency Surgery (WSES) guidelines for management of CDI in surgical patients

    WSES guidelines for management of Clostridium difficile infection in surgical patients

    Get PDF
    In the last two decades there have been dramatic changes in the epidemiology of Clostridium difficile infection (CDI), with increases in incidence and severity of disease in many countries worldwide. The incidence of CDI has also increased in surgical patients. Optimization of management of C difficile, has therefore become increasingly urgent. An international multidisciplinary panel of experts prepared evidenced-based World Society of Emergency Surgery (WSES) guidelines for management of CDI in surgical patients.Peer reviewe

    WSES guidelines for management of Clostridium difficile infection in surgical patients

    Full text link

    Development and Validation of the Light and Spectroscopy Concept Inventory

    No full text
    This article describes the development and validation of the Light and Spectroscopy Concept Inventory (LSCI), a 26-item diagnostic test designed (1) to measure students’ conceptual understanding of topics related to light and spectroscopy, and (2) to evaluate the effectiveness of instructional interventions in promoting meaningful learning gains in an introductory college astronomy course. We also present the final field—tested version of the LSCI for general use by the astronomy education community

    The Need for a Light and Spectroscopy Concept Inventory for Assessing Innovations in Introductory Astronomy Survey Courses

    No full text
    In this era of dramatically increased astronomy education research efforts, there is a growing need for standardized evaluation protocols and a strategy to assess both student comprehension of fundamental concepts and the success of innovative instructional interventions. Of the many topics that could be taught in an introductory astronomy course, the nature of light and the electromagnetic spectrum is by far the most universally covered topic. Yet, to the surprise and disappointment of instructors, many students struggle to understand underlying fundamental concepts related to light, such as blackbody radiation, Wien’s law, the Stefan-Boltzmann law, and the nature and causes of emission and absorption line spectra. Motivated by predecessor instruments such as the Force Concept Inventory (FCI), the Astronomy Diagnostic Test (ADT), and the Lunar Phases Concept Inventory (LPCI), we call for, and are working on, the development and validation of a Light and Spectroscopy Concept Inventory. This assessment instrument should measure students’ conceptual understanding of light and spectroscopy and gauge the effectiveness of classroom instruction in promoting student learning in the introductory astronomy survey course

    The Primed Ebolavirus Glycoprotein (19-Kilodalton GP1,2): Sequence and Residues Critical for Host Cell Binding▿ †

    No full text
    Entry of ebolavirus (EBOV) into cells is mediated by its glycoprotein (GP1,2), a class I fusion protein whose structure was recently determined (J. E. Lee et al., Nature 454:177-182, 2008). Here we confirmed two major predictions of the structural analysis, namely, the residues in GP1 and GP2 that remain after GP1,2 is proteolytically primed by endosomal cathepsins for fusion and residues in GP1 that are critical for binding to host cells. Mass spectroscopic analysis indicated that primed GP1,2 contains residues 33 to 190 of GP1 and all residues of GP2. The location of the receptor binding site was determined by a two-pronged approach. We identified a small receptor binding region (RBR), residues 90 to 149 of GP1, by comparing the cell binding abilities of four RBR proteins produced in high yield. We characterized the binding properties of the optimal RBR (containing GP1 residues 57 to 149) and then conducted a mutational analysis to identify critical binding residues. Substitutions at four lysines (K95, K114, K115, and K140) decreased binding and the ability of RBR proteins to inhibit GP1,2-mediated infection. K114, K115, and K140 lie in a small region modeled to be located on the top surface of the chalice following proteolytic priming; K95 lies deeper in the chalice bowl. Combined with those of Lee et al., our findings provide structural insight into how GP1,2 is primed for fusion and define the core of the EBOV RBR (residues 90 to 149 of GP1) as a highly conserved region containing a two-stranded β-sheet, the two intra-GP1 disulfide bonds, and four critical Lys residues
    corecore