11 research outputs found

    Neutrophil inhibitory factor selectively inhibits the endothelium-driven transmigration of eosinophils In vitro and airway eosinophilia in OVA-induced allergic lung inflammation

    No full text
    Leukocyte adhesion molecules are involved in cell recruitment in an allergic airway response and therefore provide a target for pharmaceutical intervention. Neutrophil inhibitory factor (NIF), derived from canine hookworm (Ancylostoma caninum), binds selectively and competes with the A-domain of CD11b for binding to ICAM-1. The effect of recombinant NIF was investigated. Intranasal administration of rNIF reduced pulmonary eosinophilic infiltration, goblet cell hyperplasia, and Th2 cytokine production in OVA-sensitized mice. In vitro, transendothelial migration of human blood eosinophils across IL-4-activated umbilical vein endothelial cell (HUVEC) monolayers was inhibited by rNIF (IC50: 4.6 ± 2.6 nM; mean ± SEM), but not across TNF or IL-1-activated HUVEC monolayers. Treatment of eosinophils with rNIF together with mAb 60.1 directed against CD11b or mAb 107 directed against the metal ion-dependent adhesion site (MIDAS) of the CD11b A-domain resulted in no further inhibition of transendothelial migration suggesting shared functional epitopes. In contrast, rNIF increased the inhibitory effect of blocking mAbs against CD18, CD11a, and VLA-4. Together, we show that rNIF, a selective antagonist of the A-domain of CD11b, has a prominent inhibitory effect on eosinophil transendothelial migration in vitro, which is congruent to the in vivo inhibition of OVA-induced allergic lung inflammation

    Blockade of IL-1R signaling diminishes Paneth cell depletion and Toxoplasma gondii induced ileitis in mice

    No full text
    International audienceInterleukin 1 is a critical inflammatory mediator and involved in host defense to several pathogens. Oral T. gondii infection causes lethal ileitis in C57BL/6 (BL6) mice and serves to investigate the mechanisms of acute intestinal inflammation. Here we show that IL-1 is expressed upon oral T. gondii (76K strain) infection in the small intestine and mediates ileitis as IL-1R1 deficient mice have reduced neutrophil recruitment in the lamina propria, parasite invasion, inflammatory lesions and enhanced survival as compared to BL6 infected control mice. Protection in the absence of IL-1R1 signaling was associated with reduced IFN-Îł expression and preserved Paneth cells, while these cells were eliminated in infected BL6 mice. Furthermore, blockade of IL-1 by IL-1ÎČ antibody attenuated inflammation in BL6 mice. In conclusion, IL-1 signaling contributes to the inflammatory response with increase IFN-Îł expression and Paneth cell depletion upon oral T. gondii infection

    Neutralisation of the interleukin-33/ST2 pathway ameliorates experimental colitis through enhancement of mucosal healing in mice

    Get PDF
    Objective: Inflammatory bowel diseases (IBD) have been intrinsically linked to a deregulated cytokine network, but novel therapeutic principles are urgently needed. Here we identify the interleukin (IL)-33 and its receptor ST2 as key negative regulators of wound healing and permeability in the colon of mice. Design: Expression of IL-33 and ST2 was determined by qRT-PCR, ELISA, immunohistochemistry and western-blot analysis. Wild-type and St2-/-mice were used in wound healing experiments and in two experimental models of IBD triggered by 2,4,6-trinitrobenzene sulphonic acid or dextran sodium sulphate (DSS). Neutralisation of ST2 was performed by using a specific blocking antibody. Results: Nuclear localisation and enhanced expression of IL-33 in myofibroblasts and enterocytes was linked to disease involvement independently of inflammation, while the expression of ST2 was primarily restricted to the colonic epithelia. In two experimental models of IBD, genetic ablation of ST2 significantly improved signs of colitis, while a sustained epithelial expression of the cyto-protective factor connexin-43 was observed in DSStreated St2-deficient mice. Unexpectedly, absence of ST2 in non-hematopoietic cells was sufficient to protect against colitis. Consistently, specific inhibition of endogenous ST2-mediated signalling by treatment with neutralising antibody improved DSS-induced colitis. In addition, IL-33 treatment impaired epithelial barrier permeability in vitro and in vivo, whereas absence of ST2 enhanced wound healing response upon acute mechanical injury in the colon. Conclusions: Our study unveiled a novel nonhematopoietic function of IL-33 in epithelial barrier function and wound healing. Therefore, blocking the IL-33/ST2 axis may represent an efficient therapy in IBD

    MOLECULAR AND EVOLUTIONARY MECHANISMS OF VIRAL EMERGENCE

    No full text

    Nitric Oxide Signaling in Plants

    No full text

    Correction to: An autosomal dominant neurological disorder caused by de novo variants in FAR1 resulting in uncontrolled synthesis of ether lipids (Genetics in Medicine, (2021), 23, 4, (740-750), 10.1038/s41436-020-01027-3)

    No full text
    In the original author list, Seth Perlman’s degrees were listed as MD, PhD. Dr Perlman’s degree is MD. The original version has been corrected

    An autosomal dominant neurological disorder caused by de novo variants in FAR1 resulting in uncontrolled synthesis of ether lipids

    No full text
    Purpose: In this study we investigate the disease etiology in 12 patients with de novo variants in FAR1 all resulting in an amino acid change at position 480 (p.Arg480Cys/His/Leu). Methods: Following next-generation sequencing and clinical phenotyping, functional characterization was performed in patients’ fibroblasts using FAR1 enzyme analysis, FAR1 immunoblotting/immunofluorescence, and lipidomics. Results: All patients had spastic paraparesis and bilateral congenital/juvenile cataracts, in most combined with speech and gross motor developmental delay and truncal hypotonia. FAR1 deficiency caused by biallelic variants results in defective ether lipid synthesis and plasmalogen deficiency. In contrast, patients’ fibroblasts with the de novo FAR1 variants showed elevated plasmalogen levels. Further functional studies in fibroblasts showed that these variants cause a disruption of the plasmalogen-dependent feedback regulation of FAR1 protein levels leading to uncontrolled ether lipid production. Conclusion: Heterozygous de novo variants affecting the Arg480 residue of FAR1 lead to an autosomal dominant disorder with a different disease mechanism than that of recessive FAR1 deficiency and a diametrically opposed biochemical phenotype. Our findings show that for patients with spastic paraparesis and bilateral cataracts, FAR1 should be considered as a candidate gene and added to gene panels for hereditary spastic paraplegia, cerebral palsy, and juvenile cataracts
    corecore