35 research outputs found

    Development of a P-I-N HgCdTe photomixer for laser heterodyne spectrometry

    Get PDF
    An improved HgCdTe photomixer technology was demonstrated employing a p-i-n photodiode structure. The i-region was near intrinsic n-type HgCdTe; the n-region was formed by B+ ion implantation; and the p-region was formed either by a shallow Au diffusion or by a Pt Schottky barrier. Experimental devices in a back-side illuminated mesa diode configuration were fabricated, tested, and delivered. The best photomixer was packaged in a 24-hour LN2 dewar along with a cooled GaAs FET preamplifier. Testing was performed by mixing black-body radiation with a CO2 laser beam and measuring the IF signal, noise, and signal-to-noise ratio in the GHz frequency range. Signal bandwidth for this photomixer was 1.3 GHz. The heterodyne NEP was 4.4 x 10 to the -20 W/Hz out to 1 GHz increasing to 8.6 x 10 to the -10 W/Hz at 2 GHz. Other photomixers delivered on this program had heterodyne NEPs at 1 GHz ranging from 8 x 10 to the -20 to 4.4 x 10 to the -19 W/Hz and NEP bandwidths from 2 to 4 GHz

    Evapotranspiration of Residential Lawns Across the United States

    Get PDF
    Despite interest in the contribution of evapotranspiration (ET) of residential turfgrass lawns to household and municipal water budgets across the United States, the spatial and temporal variability of residential lawn ET across large scales is highly uncertain. We measured instantaneous ET (ETinst) of lawns in 79 residential yards in six metropolitan areas: Baltimore, Boston, Miami, Minneapolis-St. Paul (mesic climates), Los Angeles and Phoenix (arid climates). Each yard had one of four landscape types and management practices: traditional lawn-dominated yards with high or low fertilizer input, yards with water-conserving features, and yards with wildlife-friendly features. We measured ETinst in situ during the growing season using portable chambers and identified environmental and anthropogenic factors controlling ET in residential lawns. For each household, we used ETinst to estimate daily ET of the lawn (ETdaily) and multiplied ETdaily by the lawn area to estimate the total volume of water lost through ET of the lawn (ETvol). ETdaily varied from 0.9 ± 0.4 mm d1 in mesic cities to 2.9 ± 0.7 mm d−1 in arid cities. Neither ETinst nor ETdaily was significantly influenced by yard landscape types and ETinst patterns indicated that lawns may be largely decoupled from regional rain-driven climate patterns. ETvol ranged from ∼0 L d−1 to over 2,000 L d−1, proportionally increasing with lawn area. Current irrigation and lawn management practices did not necessarily result in different ETinst or ETdaily among traditional, water-conserving, or wildlife-friendly yards, but smaller lawn areas in water-conserving and wildlife-friendly yards resulted in lower ETvol

    Development and Validation of a Risk Score for Chronic Kidney Disease in HIV Infection Using Prospective Cohort Data from the D:A:D Study

    Get PDF
    Ristola M. on työryhmien DAD Study Grp ; Royal Free Hosp Clin Cohort ; INSIGHT Study Grp ; SMART Study Grp ; ESPRIT Study Grp jäsen.Background Chronic kidney disease (CKD) is a major health issue for HIV-positive individuals, associated with increased morbidity and mortality. Development and implementation of a risk score model for CKD would allow comparison of the risks and benefits of adding potentially nephrotoxic antiretrovirals to a treatment regimen and would identify those at greatest risk of CKD. The aims of this study were to develop a simple, externally validated, and widely applicable long-term risk score model for CKD in HIV-positive individuals that can guide decision making in clinical practice. Methods and Findings A total of 17,954 HIV-positive individuals from the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) study with >= 3 estimated glomerular filtration rate (eGFR) values after 1 January 2004 were included. Baseline was defined as the first eGFR > 60 ml/min/1.73 m2 after 1 January 2004; individuals with exposure to tenofovir, atazanavir, atazanavir/ritonavir, lopinavir/ritonavir, other boosted protease inhibitors before baseline were excluded. CKD was defined as confirmed (>3 mo apart) eGFR In the D:A:D study, 641 individuals developed CKD during 103,185 person-years of follow-up (PYFU; incidence 6.2/1,000 PYFU, 95% CI 5.7-6.7; median follow-up 6.1 y, range 0.3-9.1 y). Older age, intravenous drug use, hepatitis C coinfection, lower baseline eGFR, female gender, lower CD4 count nadir, hypertension, diabetes, and cardiovascular disease (CVD) predicted CKD. The adjusted incidence rate ratios of these nine categorical variables were scaled and summed to create the risk score. The median risk score at baseline was -2 (interquartile range -4 to 2). There was a 1: 393 chance of developing CKD in the next 5 y in the low risk group (risk score = 5, 505 events), respectively. Number needed to harm (NNTH) at 5 y when starting unboosted atazanavir or lopinavir/ritonavir among those with a low risk score was 1,702 (95% CI 1,166-3,367); NNTH was 202 (95% CI 159-278) and 21 (95% CI 19-23), respectively, for those with a medium and high risk score. NNTH was 739 (95% CI 506-1462), 88 (95% CI 69-121), and 9 (95% CI 8-10) for those with a low, medium, and high risk score, respectively, starting tenofovir, atazanavir/ritonavir, or another boosted protease inhibitor. The Royal Free Hospital Clinic Cohort included 2,548 individuals, of whom 94 individuals developed CKD (3.7%) during 18,376 PYFU (median follow-up 7.4 y, range 0.3-12.7 y). Of 2,013 individuals included from the SMART/ESPRIT control arms, 32 individuals developed CKD (1.6%) during 8,452 PYFU (median follow-up 4.1 y, range 0.6-8.1 y). External validation showed that the risk score predicted well in these cohorts. Limitations of this study included limited data on race and no information on proteinuria. Conclusions Both traditional and HIV-related risk factors were predictive of CKD. These factors were used to develop a risk score for CKD in HIV infection, externally validated, that has direct clinical relevance for patients and clinicians to weigh the benefits of certain antiretrovirals against the risk of CKD and to identify those at greatest risk of CKD.Peer reviewe

    Woody Plant-Soil Relationships in Interstitial Spaces Have Implications for Future Forests Within and Beyond Urban Areas

    No full text
    Relatively unmanaged interstitial areas at the residential–wildland interface can support the development of novel woody plant communities. Community assembly processes in urban areas involve interactions between spontaneous and cultivated species pools that include native, introduced (exotic/non-native) and invasive species. The potential of these communities to spread under changing climate conditions has implications for the future trajectories of forests within and beyond urban areas. We quantified woody vegetation (including trees and shrubs) in relatively unmanaged “interstitial” areas at the residential–wildland interface and in exurban reference natural areas in six metropolitan regions across the continental USA. In addition, we analyzed soil N and C cycling processes to ensure that there were no major anthropogenic differences between reference and interstitial sites such as compaction, profile disturbance or fertilization, and to explore effects of novel plant communities on soil processes. We observed marked differences in woody plant community composition between interstitial and reference sites in most metropolitan regions. These differences appeared to be driven by the expanded species pool in urban areas. There were no obvious anthropogenic effects on soils, enabling us to determine that compositional differences between interstitial and reference areas were associated with variation in soil N availability. Our observations of the formation of novel communities in interstitial spaces in six cities across a very broad range of climates, suggest that our results have relevance for how forests within and beyond urban areas are assessed and managed to provide ecosystem services and resilience that rely on native biodiversity
    corecore