12 research outputs found

    Gravel Geology and Muskoxen Paleontology of a Late Pleistocene Fossil Site in Saltville, Virginia

    Get PDF
    Two distinct studies within the Saltville Valley of southwestern Virginia revealed insights into local Pleistocene geology and paleontology. A variety of analytical techniques were applied to gravel deposits within the paleontological site of SV-5/7 that revealed this unit is very poorly sorted, has a subangular matrix, and contains significant components of silt and sand in addition to rounded cobbles. These results suggest that rather than being deposited by fluvial processes as previously suggested, these gravels were likely the result of one or many debris flows. Additionally, the identity of fossil muskoxen from Saltville was reassessed using cranial and dental material. The results of the comparative anatomy of Bootherium and Ovibos specimens suggest that it may be possible to distinguish between fossil muskoxen genera using teeth, and to a lesser extent, cranial measurements. This analysis reaffirms that Bootherium is the only muskoxen definitively known from the Pleistocene of the Saltville Valley

    Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors

    Get PDF
    Searches for a stochastic gravitational-wave background (SGWB) using terrestrial detectors typically involve cross-correlating data from pairs of detectors. The sensitivity of such cross-correlation analyses depends, among other things, on the separation between the two detectors: the smaller the separation, the better the sensitivity. Hence, a colocated detector pair is more sensitive to a gravitational-wave background than a noncolocated detector pair. However, colocated detectors are also expected to suffer from correlated noise from instrumental and environmental effects that could contaminate the measurement of the background. Hence, methods to identify and mitigate the effects of correlated noise are necessary to achieve the potential increase in sensitivity of colocated detectors. Here we report on the first SGWB analysis using the two LIGO Hanford detectors and address the complications arising from correlated environmental noise. We apply correlated noise identification and mitigation techniques to data taken by the two LIGO Hanford detectors, H1 and H2, during LIGO’s fifth science run. At low frequencies, 40–460 Hz, we are unable to sufficiently mitigate the correlated noise to a level where we may confidently measure or bound the stochastic gravitational-wave signal. However, at high frequencies, 460–1000 Hz, these techniques are sufficient to set a 95% confidence level upper limit on the gravitational-wave energy density of Ω(f) < 7.7 × 10[superscript -4](f/900  Hz)[superscript 3], which improves on the previous upper limit by a factor of ~180. In doing so, we demonstrate techniques that will be useful for future searches using advanced detectors, where correlated noise (e.g., from global magnetic fields) may affect even widely separated detectors.National Science Foundation (U.S.)United States. National Aeronautics and Space AdministrationCarnegie TrustDavid & Lucile Packard FoundationAlfred P. Sloan Foundatio

    A Combination of Molecular Markers and Clinical Features Improve the Classification of Pancreatic Cysts

    No full text
    Background and Aims The management of pancreatic cysts poses challenges to both patients and their physicians. We investigated whether a combination of molecular markers and clinical information could improve the classification of pancreatic cysts and management of patients. Methods We performed a multi-center, retrospective study of 130 patients with resected pancreatic cystic neoplasms (12 serous cystadenomas, 10 solid pseudopapillary neoplasms, 12 mucinous cystic neoplasms, and 96 intraductal papillary mucinous neoplasms). Cyst fluid was analyzed to identify subtle mutations in genes known to be mutated in pancreatic cysts (BRAF, CDKN2A, CTNNB1, GNAS, KRAS, NRAS, PIK3CA, RNF43, SMAD4, TP53, and VHL); to identify loss of heterozygozity at CDKN2A, RNF43, SMAD4, TP53, and VHL tumor suppressor loci; and to identify aneuploidy. The analyses were performed using specialized technologies for implementing and interpreting massively parallel sequencing data acquisition. An algorithm was used to select markers that could classify cyst type and grade. The accuracy of the molecular markers was compared with that of clinical markers and a combination of molecular and clinical markers. Results We identified molecular markers and clinical features that classified cyst type with 90%-100% sensitivity and 92%-98% specificity. The molecular marker panel correctly identified 67 of the 74 patients who did not require surgery and could, therefore, reduce the number of unnecessary operations by 91%. Conclusions We identified a panel of molecular markers and clinical features that show promise for the accurate classification of cystic neoplasms of the pancreas and identification of cysts that require surgery

    A multimodality test to guide the management of patients with a pancreatic cyst

    Get PDF
    Pancreatic cysts are common and often pose a management dilemma, because some cysts are precancerous, whereas others have little risk of developing into invasive cancers. We used supervised machine learning techniques to develop a comprehensive test, CompCyst, to guide the management of patients with pancreatic cysts. The test is based on selected clinical features, imaging characteristics, and cyst fluid genetic and biochemical markers. Using data from 436 patients with pancreatic cysts, we trained CompCyst to classify patients as those who required surgery, those who should be routinely monitored, and those who did not require further surveillance. We then tested CompCyst in an independent cohort of 426 patients, with histopathology used as the gold standard. We found that clinical management informed by the CompCyst test was more accurate than the management dictated by conventional clinical and imaging criteria alone. Application of the CompCyst test would have spared surgery in more than half of the patients who underwent unnecessary resection of their cysts. CompCyst therefore has the potential to reduce the patient morbidity and economic costs associated with current standard-of-care pancreatic cyst management practices

    A Combination of Molecular Markers and Clinical Features Improve the Classification of Pancreatic Cysts

    No full text
    BACKGROUND & AIMS: The management of pancreatic cysts poses challenges to both patients and their physicians. We investigated whether a combination of molecular markers and clinical information could improve the classification of pancreatic cysts and management of patients. METHODS: We performed a multi-center, retrospective study of 130 patients with resected pancreatic cystic neoplasms (12 serous cystadenomas, 10 solid pseudopapillary neoplasms, 12 mucinous cystic neoplasms, and 96 intraductal papillary mucinous neoplasms). Cyst fluid was analyzed to identify subtle mutations in genes known to be mutated in pancreatic cysts (BRAF, CDKN2A, CTNNB1, GNAS, KRAS, NRAS, PIK3CA, RNF43, SMAD4, TP53, and VHL); to identify loss of heterozygozity at CDKN2A, RNF43, SMAD4, TP53, and VHL tumor suppressor loci; and to identify aneuploidy. The analyses were performed using specialized technologies for implementing and interpreting massively parallel sequencing data acquisition. An algorithm was used to select markers that could classify cyst type and grade. The accuracy of the molecular markers was compared with that of clinical markers and a combination of molecular and clinical markers. RESULTS: We identified molecular markers and clinical features that classified cyst type with 90%-100% sensitivity and 92%-98% specificity. The molecular marker panel correctly identified 67 of the 74 patients who did not require surgery and could, therefore, reduce the number of unnecessary operations by 91%. CONCLUSIONS: We identified a panel of molecular markers and clinical features that show promise for the accurate classification of cystic neoplasms of the pancreas and identification of cysts that require surgery.publisher: Elsevier articletitle: A Combination of Molecular Markers and Clinical Features Improve the Classification of Pancreatic Cysts journaltitle: Gastroenterology articlelink: http://dx.doi.org/10.1053/j.gastro.2015.07.041 content_type: article copyright: Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.status: publishe
    corecore