43 research outputs found

    Bound and continuum states of diatomic molecules using the R-matrix method

    Get PDF
    Calculations are presented for electronic excitation of H2 by electron impact. For the initial calculations, ah initio R-matrix scattering techniques are used to represent scattering from the ground to five low lying electronic states of H2. Each target state is represented by a full configuration interaction treatment within a basis of Slater type orbitals, optimised to give accurate vertical excitation energies. All total symmetries including 2φg are included in the scattering calculation. Eigenphase sums and integral cross sections are presented for this model together with assignments of the resonance structures produced. This model is then extended to include the lowest seven electronic states of H2 at the equilibrium geometry. Eigenphase sums and resonance feature analysis are presented for excitation from the ground to the six excited states included in the calculation. Integral cross sections are also presented for these processes and extensive comparison made with experimental data. Differential cross sections calculated using the seven state model are presented for both resonant and non-resonant energy regions and comparison made with previous experimental and theoretical results. A method of adapting scattering calculations to calculate bound states of molecules within the R-matrix method is presented. This method is based on atomic method of Seaton (1985). The results of test calculations on the bound states oi CH and HeH, at fixed internuclear separation, are presented together with results for the vibrational bound states of HeH. The development of this method made it possible to calculate transition dipoles for excitation processes. Results for the transitions dipoles of H2, as a function of internuclear separation, are presented and comparison made with available theoretical data

    A T cell-myeloid IL-10 axis regulates pathogenic IFN-γ-dependent immunity in a mouse model of type 2-low asthma

    Get PDF
    Background Although originally defined as a type 2 (T2) immune-mediated condition, non-T2 cytokines, such as IFN-γ and IL-17A, have been implicated in asthma pathogenesis, particularly severe disease. IL-10 regulates T helper (Th) cell phenotypes and can dampen T2 immunity to allergens, but its functions in controlling non-T2 cytokine responses in asthma are unclear. Objective: Determine how IL-10 regulates the balance of Th cell responses to inhaled allergen. Methods Allergic airway disease (AAD) was induced in wild-type, IL-10 reporter and conditional IL-10 or IL-10 receptor α (IL-10Rα) knockout mice, by repeated intranasal administration of house dust mite (HDM). IL-10 and IFN-γ signalling were disrupted using blocking antibodies. Results Repeated HDM inhalation induced a mixed IL-13/IL-17A response and accumulation of IL-10-producing FoxP3- effector CD4+ T cells in the lungs. Ablation of T cell-derived IL-10 increased the IFN-γ and IL-17A response to HDM, reducing IL-13 levels and airway eosinophilia without affecting IgE or airway hyperresponsiveness. The increased IFN-γ response could be recapitulated by IL-10Rα deletion in CD11c+ myeloid cells or local IL-10Rα blockade. Disruption of the T cell-myeloid IL-10 axis resulted in elevated pulmonary monocyte-derived dendritic cell numbers and increased IFN-γ-dependent expression of CXCR3 ligands by airway macrophages, suggestive of a feedforward loop of Th1 cell recruitment. Augmented IFN-γ responses in the HDM AAD model were accompanied by increased disruption of airway epithelium, which was reversed by therapeutic blockade of IFN-γ. Conclusions IL-10 from effector T cells signals to CD11c+ myeloid cells to suppress an atypical and pathogenic IFN-γ response to inhaled HDM

    Chemical reactivity of ultracold polar molecules: investigation of H + HCl and H + DCl collisions

    Full text link
    Quantum scattering calculations are reported for the H+HCl(v,j=0) and H+DCl(v,j=0) collisions for vibrational levels v=0-2 of the diatoms. Calculations were performed for incident kinetic energies in the range 10-7 to 10-1 eV, for total angular momentum J=0 and s-wave scattering in the entrance channel of the collisions. Cross sections and rate coefficients are characterized by resonance structures due to quasibound states associated with the formation of the H...HCl and H...DCl van der Waals complexes in the incident channel. For the H+HCl(v,j=0) collision for v=1,2, reactive scattering leading to H_2 formation is found to dominate over non-reactive vibrational quenching in the ultracold regime. Vibrational excitation of HCl from v=0 to v=2 increases the zero-temperature limiting rate coefficient by about 8 orders of magnitude.Comment: 9 pages, 6 figures, submitted to Euro. Phys. J. topical issue on "Ultracold Polar Molecules: Formation and Collisions

    Inception of early-life allergen–induced airway hyperresponsiveness is reliant on IL-13+CD4+ T cells

    Get PDF
    Airway hyperresponsiveness (AHR) is a critical feature of wheezing and asthma in children, but the initiating immune mechanisms remain unconfirmed. We demonstrate that both recombinant interleukin-33 (rIL-33) and allergen [house dust mite (HDM) or Alternaria alternata] exposure from day 3 of life resulted in significantly increased pulmonary IL-13+CD4+ T cells, which were indispensable for the development of AHR. In contrast, adult mice had a predominance of pulmonary LinnegCD45+CD90+IL-13+ type 2 innate lymphoid cells (ILC2s) after administration of rIL-33. HDM exposure of neonatal IL-33 knockout (KO) mice still resulted in AHR. However, neonatal CD4creIL-13 KO mice (lacking IL-13+CD4+ T cells) exposed to allergen from day 3 of life were protected from AHR despite persistent pulmonary eosinophilia, elevated IL-33 levels, and IL-13+ ILCs. Moreover, neonatal mice were protected from AHR when inhaled Acinetobacter lwoffii (an environmental bacterial isolate found in cattle farms, which is known to protect from childhood asthma) was administered concurrent with HDM. A. lwoffii blocked the expansion of pulmonary IL-13+CD4+ T cells, whereas IL-13+ ILCs and IL-33 remained elevated. Administration of A. lwoffii mirrored the findings from the CD4creIL-13 KO mice, providing a translational approach for disease protection in early life. These data demonstrate that IL-13+CD4+ T cells, rather than IL-13+ ILCs or IL-33, are critical for inception of allergic AHR in early life

    The Schwinger Variational Method

    Get PDF
    Variational methods have proven invaluable in theoretical physics and chemistry, both for bound state problems and for the study of collision phenomena. For collisional problems they can be grouped into two types: those based on the Schroedinger equation and those based on the Lippmann-Schwinger equation. The application of the Schwinger variational (SV) method to e-molecule collisions and photoionization has been reviewed previously. The present chapter discusses the implementation of the SV method as applied to e-molecule collisions

    QDB: A new database of plasma chemistries and reactions

    Get PDF
    One of the most challenging and recurring problems when modeling plasmas is the lack of data on the key atomic and molecular reactions that drive plasma processes. Even when there are data for some reactions, complete and validated datasets of chemistries are rarely available. This hinders research on plasma processes and curbs development of industrial applications. The QDB project aims to address this problem by providing a platform for provision, exchange, and validation of chemistry datasets. A new data model developed for QDB is presented. QDB collates published data on both electron scattering and heavy-particle reactions. These data are formed into reaction sets, which are then validated against experimental data where possible. This process produces both complete chemistry sets and identifies key reactions that are currently unreported in the literature. Gaps in the datasets can be filled using established theoretical methods. Initial validated chemistry sets for SF 6 /CF 4 /O 2 and SF 6 /CF 4 /N 2 /H 2 are presented as examples
    corecore