94 research outputs found

    Repulsive photons in a quantum nonlinear medium

    Full text link
    The ability to control strongly interacting light quanta (photons) is of central importance in quantum science and engineering. Recently it was shown that such strong interactions can be engineered in specially prepared quantum optical systems. Here, we demonstrate a method for coherent control of strongly interacting photons, extending quantum nonlinear optics into the domain of repulsive photons. This is achieved by coherently coupling photons to several atomic states, including strongly interacting Rydberg levels in a cold Rubidium gas. Using this approach we demonstrate both repulsive and attractive interactions between individual photons and characterize them by the measured two- and three-photon correlation functions. For the repulsive case, we demonstrate signatures of interference and self ordering from three-photon measurements. These observations open a route to study strongly interacting dissipative systems and quantum matter composed of light such as a crystal of individual photons.Comment: 12 pages, 5 figure

    Extra Dirac Equations

    Get PDF
    This paper has rather a pedagogical meaning. Surprising symmetries in the (j,0)⊕(0,j)(j,0)\oplus (0,j) Lorentz group representation space are analyzed. The aim is to draw reader's attention to the possibility of describing the particle world on the ground of the Dirac "doubles". Several tune points of the variational principle for this kind of equations are briefly discussed.Comment: REVTeX 3.0, 14p

    Lagrangian for the Majorana-Ahluwalia Construct

    Get PDF
    The equations describing self/anti-self charge conjugate states, recently proposed by Ahluwalia, are re-written to covariant form. The corresponding Lagrangian for the neutral particle theory is proposed. From a group-theoretical viewpoint the construct is an example of the Nigam-Foldy-Bargmann-Wightman-Wigner-type quantum field theory based on the doubled representations of the extended Lorentz group. Relations with the Sachs-Schwebel and Ziino-Barut concepts of relativistic quantum theory are discussed.Comment: 10pp., REVTeX 3.0 fil

    Neutral Particles in Light of the Majorana-Ahluwalia Ideas

    Get PDF
    The first part of this article (Sections I and II) presents oneself an overview of theory and phenomenology of truly neutral particles based on the papers of Majorana, Racah, Furry, McLennan and Case. The recent development of the construct, undertaken by Ahluwalia [{\it Mod. Phys. Lett. A}{\bf 9} (1994) 439; {\it Acta Phys. Polon. B}{\bf 25} (1994) 1267; Preprints LANL LA-UR-94-1252, LA-UR-94-3118], could be relevant for explanation of the present experimental situation in neutrino physics and astrophysics. In Section III the new fundamental wave equations for self/anti-self conjugate type-II spinors, proposed by Ahluwalia, are re-casted to covariant form. The connection with the Foldy-Nigam-Bargmann-Wightman- Wigner (FNBWW) type quantum field theory is found. The possible applications to the problem of neutrino oscillations are discussed.Comment: REVTEX file. 21pp. No figure

    A Model of Ischemia-Induced Neuroblast Activation in the Adult Subventricular Zone

    Get PDF
    We have developed a rat brain organotypic culture model, in which tissue slices contain cortex-subventricular zone-striatum regions, to model neuroblast activity in response to in vitro ischemia. Neuroblast activation has been described in terms of two main parameters, proliferation and migration from the subventricular zone into the injured cortex. We observed distinct phases of neuroblast activation as is known to occur after in vivo ischemia. Thus, immediately after oxygen/glucose deprivation (6–24 hours), neuroblasts reduce their proliferative and migratory activity, whereas, at longer time points after the insult (2 to 5 days), they start to proliferate and migrate into the damaged cortex. Antagonism of ionotropic receptors for extracellular ATP during and after the insult unmasks an early activation of neuroblasts in the subventricular zone, which responded with a rapid and intense migration of neuroblasts into the damaged cortex (within 24 hours). The process is further enhanced by elevating the production of the chemoattractant SDf-1α and may also be boosted by blocking the activation of microglia. This organotypic model which we have developed is an excellent in vitro system to study neurogenesis after ischemia and other neurodegenerative diseases. Its application has revealed a SOS response to oxygen/glucose deprivation, which is inhibited by unfavorable conditions due to the ischemic environment. Finally, experimental quantifications have allowed us to elaborate a mathematical model to describe neuroblast activation and to develop a computer simulation which should have promising applications for the screening of drug candidates for novel therapies of ischemia-related pathologies

    A framework to analyze multiple time series data: A case study with Streptomyces coelicolor

    Full text link
    Transcriptional regulation in differentiating microorganisms is highly dynamic involving multiple and interwinding circuits consisted of many regulatory genes. Elucidation of these networks may provide the key to harness the full capacity of many organisms that produce natural products. A powerful tool evolved in the past decade is global transcriptional study of mutants in which one or more key regulatory genes of interest have been deleted. To study regulatory mutants of Streptomyces coelicolor , we developed a framework of systematic analysis of gene expression dynamics. Instead of pair-wise comparison of samples in different combinations, genomic DNA was used as a common reference for all samples in microarray assays, thus, enabling direct comparison of gene transcription dynamics across different isogenic mutants. As growth and various differentiation events may unfold at different rates in different mutants, the global transcription profiles of each mutant were first aligned computationally to those of the wild type, with respect to the corresponding growth and differentiation stages, prior to identification of kinetically differentially expressed genes. The genome scale transcriptome data from wild type and a Δ absA1 mutant of Streptomyces coelicolor were analyzed within this framework, and the regulatory elements affected by the gene knockout were identified. This methodology should find general applications in the analysis of other mutants in our repertoire and in other biological systems.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47950/1/10295_2005_Article_34.pd

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
    • …
    corecore