463 research outputs found
Independent control of polar and azimuthal anchoring
Monte Carlo simulation, experiment and continuum theory are used to examine
the anchoring exhibited by a nematic liquid crystal at a patterned substrate
comprising a periodic array of rectangles that, respectively, promote vertical
and planar alignment. It is shown that the easy axis and effective anchoring
energy promoted by such surfaces can be readily controlled by adjusting the
design of the pattern. The calculations reveal rich behavior: for strong
anchoring, as exhibited by the simulated system, for rectangle ratios
the nematic aligns in the direction of the long edge of the rectangles, the
azimuthal anchoring coefficient changing with pattern shape. In weak anchoring
scenarios, however, including our experimental systems, preferential anchoring
is degenerate between the two rectangle diagonals. Bistability between
diagonally-aligned and edge-aligned arrangement is predicted for intermediate
combinations of anchoring coefficient and system length-scale.Comment: 12 pages, 12 figure
Phage display selected magnetite interacting Adhirons for shape controlled nanoparticle synthesis
Adhirons are robust, well expressing, peptide display scaffold proteins, developed as an effective alternative
to traditional antibody binding proteins for highly specific molecular recognition applications. This paper
reports for the first time the use of these versatile proteins for material binding, and as tools for
controlling material synthesis on the nanoscale. A phage library of Adhirons, each displaying two variable
binding loops, was screened to identify specific proteins able to interact with [100] faces of cubic
magnetite nanoparticles. The selected variable regions display a strong preference for basic residues
such as lysine. Molecular dynamics simulations of amino acid adsorption onto a [100] magnetite surface
provides a rationale for these interactions, with the lowest adsorption energy observed with lysine. These
proteins direct the shape of the forming nanoparticles towards a cubic morphology in room temperature
magnetite precipitation reactions, in stark contrast to the high temperature, harsh reaction conditions
currently used to produce cubic nanoparticles. These effects demonstrate the utility of the selected
Adhirons as novel magnetite mineralization control agents using ambient aqueous conditions. The
approach we outline with artificial protein scaffolds has the potential to develop into a toolkit of novel
additives for wider nanomaterial fabrication
Galerkin FEM for fractional order parabolic equations with initial data in
We investigate semi-discrete numerical schemes based on the standard Galerkin
and lumped mass Galerkin finite element methods for an initial-boundary value
problem for homogeneous fractional diffusion problems with non-smooth initial
data. We assume that , is a convex
polygonal (polyhedral) domain. We theoretically justify optimal order error
estimates in - and -norms for initial data in . We confirm our theoretical findings with a number of numerical tests
that include initial data being a Dirac -function supported on a
-dimensional manifold.Comment: 13 pages, 3 figure
Concentrating Membrane Proteins Using Asymmetric Traps and AC Electric Fields
Membrane proteins are key components of the plasma membrane and are responsible for control of chemical ionic gradients, metabolite and nutrient transfer, and signal transduction between the interior of cells and the external environment. Of the genes in the human genome, 30% code for membrane proteins (Krogh et al. J. Mol. Biol.2001, 305, 567). Furthermore, many FDA-approved drugs target such proteins (Overington et al. Nat. Rev. Drug Discovery2006, 5, 993). However, the structure-function relationships of these are notably sparse because of difficulties in their purification and handling outside of their membranous environment. Methods that permit the manipulation of membrane components while they are still in the membrane would find widespread application in separation, purification, and eventual structure-function determination of these species (Poo et al. Nature1977, 265, 602). Here we show that asymmetrically patterned supported lipid bilayers in combination with AC electric fields can lead to efficient manipulation of charged components. We demonstrate the concentration and trapping of such components through the use of a ânested trapâ and show that this method is capable of yielding an approximately 30-fold increase in the average protein concentration. Upon removal of the field, the material remains trapped for several hours as a result of topographically restricted diffusion. Our results indicate that this method can be used for concentrating and trapping charged membrane components while they are still within their membranous environment. We anticipate that our approach could find widespread application in the manipulation and study of membrane proteins
Recommended from our members
Neurological, Cognitive, and Psychological Findings Among Survivors of Ebola Virus Disease From the 1995 Ebola Outbreak in Kikwit, Democratic Republic of Congo: A Cross-sectional Study.
BackgroundClinical sequelae of Ebola virus disease (EVD) have not been described more than 3 years postoutbreak. We examined survivors and close contacts from the 1995 Ebola outbreak in Kikwit, Democratic Republic of Congo (DRC), and determined prevalence of abnormal neurological, cognitive, and psychological findings and their association with EVD survivorship.MethodsFrom August to September 2017, we conducted a cross-sectional study in Kikwit, DRC. Over 2 decades after the EVD outbreak, we recruited EVD survivors and close contacts from the outbreak to undergo physical examination and culturally adapted versions of the Folstein mini-mental status exam (MMSE) and Goldberg anxiety and depression scale (GADS). We estimated the strength of relationships between EVD survivorship and health outcomes using linear regression models by comparing survivors versus close contacts, adjusting for age, sex, educational level, marital status, and healthcare worker status.ResultsWe enrolled 20 EVD survivors and 187 close contacts. Among the 20 EVD survivors, 4 (20%) reported at least 1 abnormal neurological symptom, and 3 (15%) had an abnormal neurological examination. Among the 187 close contacts, 14 (11%) reported at least 1 abnormal neurologic symptom, and 9 (5%) had an abnormal neurological examination. EVD survivors had lower mean MMSE and higher mean GADS scores as compared to close contacts (MMSE: adjusted coefficient: -1.85; 95% confidence interval [CI]: -3.63, -0.07; GADS: adjusted coefficient: 3.91; 95% CI: 1.76, 6.04).ConclusionsEVD survivors can have lower cognitive scores and more symptoms of depression and anxiety than close contacts more than 2 decades after Ebola virus outbreaks
Nematic liquid crystal alignment on chemical patterns
Patterned Self-Assembled Monolayers (SAMs) promoting both homeotropic and planar degenerate alignment of 6CB and 9CB in their nematic phase, were created using microcontact printing of functionalised organothiols on gold films. The effects of a range of different pattern geometries and sizes were investigated, including stripes, circles and checkerboards. EvanescentWave Ellipsometry was used to study the orientation of the liquid crystal (LC) on these patterned surfaces during the isotropic-nematic phase transition. Pretransitional growth of a homeotropic layer was observed on 1 Âčm homeotropic aligning stripes, followed by a homeotropic mono-domain state prior to the
bulk phase transition. Accompanying Monte-Carlo simulations of LCs aligned on nano-patterned surfaces were also performed. These simulations also showed the presence of the homeotropic mono-domain state prior to the transition.</p
Effect of cadence on locomotorârespiratory coupling during upper-body exercise
Introduction: Asynchronous arm-cranking performed at high cadences elicits greater cardiorespiratory responses compared to low cadences. This has been attributed to increased postural demand and locomotorârespiratory coupling (LRC), and yet, this has not been empirically tested. This study aimed to assess the effects of cadence on cardiorespiratory responses and LRC during upper-body exercise. Methods: Eight recreationally-active men performed arm-cranking exercise at moderate and severe intensities that were separated by 10 min of rest. At each intensity, participants exercised for 4 min at each of three cadences (50, 70, and 90 rev minâ1) in a random order, with 4 min rest-periods applied in-between cadences. Exercise measures included LRC via whole- and half-integer ratios, cardiorespiratory function, perceptions of effort (RPE and dyspnoea), and diaphragm EMG using an oesophageal catheter. Results: The prevalence of LRC during moderate exercise was highest at 70 vs. 50 rev minâ1 (27 ± 10 vs. 13 ± 9%, p = 0.000) and during severe exercise at 90 vs. 50 rev minâ1 (24 ± 7 vs. 18 ± 5%, p = 0.034), with a shorter inspiratory time and higher mean inspiratory flow (p < 0.05) at higher cadences. During moderate exercise, (Formula presented.) and fC were higher at 90 rev minâ1 (p < 0.05) relative to 70 and 50 rev minâ1 ((Formula presented.) 1.19 ± 0.25 vs. 1.05 ± 0.21 vs. 0.97 ± 0.24 L minâ1; fC 116 ± 11 vs. 101 ± 13 vs. 101 ± 12 b minâ1), with concomitantly elevated dyspnoea. There were no discernible cadence-mediated effects on diaphragm EMG. Conclusion: Participants engage in LRC to a greater extent at moderate-high cadences which, in turn, increase respiratory airflow. Cadence rate should be carefully considered when designing aerobic training programmes involving the upper-limbs
Surface-enhanced Raman scattering measurement from a lipid bilayer encapsulating a single decahedral nanoparticle mediated by an optical trap
We present a new technique for the study of model membranes on the length-scale of a single nanosized liposome. Silver decahedral nanoparticles have been encapsulated by a model unilamellar lipid bilayer creating nano-sized lipid vesicles. The metal core has two roles (i) increasing the polarizability of vesicles, enabling a single vesicle to be isolated and confined in an optical trap, and (ii) enhancing Raman scattering from the bilayer, via the high surface-plasmon field at the sharp vertices of the decahedral particles. Combined this has allowed us to measure a Raman fingerprint from a single vesicle of 50 nmdiameter, containing just âŒ104 lipid molecules in a bilayer membrane over a surface area of <0.01 ”m2, equivalent to a volume of approximately 1 zepto-litre. Raman scattering is a weak and inefficient process and previous studies have required either a substantially larger bilayer area in order to obtain a detectable signal, or the tagging of lipid molecules with a chromophore to provide an indirect probe of the bilayer. Our approach is fully label-free and bio-compatible and, in the future, it will enable much more localized studies of the heterogeneous structure of lipid bilayers and of membrane-bound components than is currently possible
Biomechanics and hydrodynamics of prey capture in the Chinese giant salamander reveal a high-performance jaw-powered suction feeding mechanism
During the evolutionary transition from fish to tetrapods, a shift from uni- to bidirectional suction feeding systems followed a reduction in the gill apparatus. Such a shift can still be observed during metamorphosis of salamanders, although many adult salamanders retain their aquatic lifestyle and feed by high-performance suction.Unfortunately, little is known about the interplay between jaws and hyobranchial motions to generate bidirectional suction flows. Here,we study the cranial morphology, aswell as kinematic and hydrodynamic aspects related to prey capture in the Chinese giant salamander (Andrias davidianus). Compared with fish and previously studied amphibians, A. davidianus uses an alternative suction mechanismthat mainly relies on accelerating water by separating the âplatesâ formed by the long and broad upper and lower jaw surfaces. Computational fluid dynamics simulations, based on three-dimensional morphology and kinematical data from high-speed videos, indicate that the viscerocranial elements mainly serve to accommodate the water that was given a sufficient anterior-to-posterior impulse beforehand by powerful jawseparation.We hypothesize that this modifiedway of generating suction is primitive for salamanders, and that this behaviour could have played an important role in the evolution of terrestrial life in vertebrates by releasing mechanical constraints on the hyobranchial system
- âŠ