122 research outputs found

    Probing the (H3-H4)(2) histone tetramer structure using pulsed EPR spectroscopy combined with site-directed spin labelling

    Get PDF
    The (H3-H4)2 histone tetramer forms the central core of nucleosomes and, as such, plays a prominent role in assembly, disassembly and positioning of nucleosomes. Despite its fundamental role in chromatin, the tetramer has received little structural investigation. Here, through the use of pulsed electron-electron double resonance spectroscopy coupled with site-directed spin labelling, we survey the structure of the tetramer in solution. We find that tetramer is structurally more heterogeneous on its own than when sequestered in the octamer or nucleosome. In particular, while the central region including the H3-H3′ interface retains a structure similar to that observed in nucleosomes, other regions such as the H3 αN helix display increased structural heterogeneity. Flexibility of the H3 αN helix in the free tetramer also illustrates the potential for post-translational modifications to alter the structure of this region and mediate interactions with histone chaperones. The approach described here promises to prove a powerful system for investigating the structure of additional assemblies of histones with other important factors in chromatin assembly/fluidity

    The spatial effect of protein deuteration on nitroxide spin-label relaxation:implications for EPR distance measurement

    Get PDF
    This work was supported by a Wellcome Trust Senior Fellowship (095062) to T.O.-H. The Authors would also like to acknowledge funding from The MRC – United Kingdom, Grant G1100021.Pulsed electron-electron double resonance (PELDOR) coupled with site-directed spin labeling is a powerful technique for the elucidation of protein or nucleic acid, macromolecular structure and interactions. The intrinsic high sensitivity of electron paramagnetic resonance enables measurement on small quantities of bio-macromolecules, however short relaxation times impose a limit on the sensitivity and size of distances that can be measured using this technique. The persistence of the electron spin-echo, in the PELDOR experiment, is one of the most crucial limitations to distance measurement. At a temperature of around 50 K one of the predominant factors affecting persistence of an echo, and as such, the sensitivity and measurable distance between spin labels, is the electron spin echo dephasing time (Tm). It has become normal practice to use deuterated solvents to extend Tm and recently it has been demonstrated that deuteration of the underlying protein significantly extends Tm. Here we examine the spatial effect of segmental deuteration of the underlying protein, and also explore the concentration and temperature dependence of highly deuterated systems.Publisher PDFPeer reviewe

    Modelling multi-protein complexes using PELDOR distance measurements for rigid body minimisation experiments using XPLOR-NIH

    Get PDF
    Crystallographic and NMR approaches have provided a wealth of structural information about protein domains. However, often these domains are found as components of larger multi domain polypeptides or complexes. Orienting domains within such contexts can provide powerful new insight into their function. The combination of site specific spin labelling and Pulsed Electron Double Resonance (PELDOR) provide a means of obtaining structural measurements that can be used to generate models describing how such domains are oriented. Here we describe a pipeline for modelling the location of thio-reactive nitroxyl spin locations to engineered sties on the histone chaperone Vps75. We then use a combination of experimentally determined measurements and symmetry constraints to model the orientation in which homodimers of Vps75 associate to form homotetramers using the XPLOR-NIH platform. This provides a working example of how PELDOR measurements can be used to generate a structural model

    The histone chaperones Vps75 and Nap1 form ring-like, tetrameric structures in solution

    Get PDF
    NAP-1 fold histone chaperones play an important role in escorting histones to and from sites of nucleosome assembly and disassembly. The two NAP-1 fold histone chaperones in budding yeast, Vps75 and Nap1, have previously been crystalized in a characteristic homodimeric conformation. In this study, a combination of small angle X-ray scattering, multi angle light scattering and pulsed electron–electron double resonance approaches were used to show that both Vps75 and Nap1 adopt ring-shaped tetrameric conformations in solution. This suggests that the formation of homotetramers is a common feature of NAP-1 fold histone chaperones. The tetramerisation of NAP-1 fold histone chaperones may act to shield acidic surfaces in the absence of histone cargo thus providing a ‘self-chaperoning’ type mechanism

    The Optimal Study: Describing the Key Components of Optimal Health Care Delivery to UK Care Home Residents: A Research Protocol

    Get PDF
    Long-term institutional care in the United Kingdom is provided by care homes. Residents have prevalent cognitive impairment and disability, have multiple diagnoses, and are subject to polypharmacy. Prevailing models of health care provision (ad hoc, reactive, and coordinated by general practitioners) result in unacceptable variability of care. A number of innovative responses to improve health care for care homes have been commissioned. The organization of health and social care in the United Kingdom is such that it is unlikely that a single solution to the problem of providing quality health care for care homes will be identified that can be used nationwide. Realist evaluation is a methodology that uses both qualitative and quantitative data to establish an in-depth understanding of what works, for whom, and in what settings. In this article we describe a protocol for using realist evaluation to understand the context, mechanisms, and outcomes that shape effective health care delivery to care home residents in the United Kingdom. By describing this novel approach, we hope to inform international discourse about research methodologies in long-term care settings internationally

    Modeling the Development of Goal-Specificity in Mirror Neurons

    Get PDF
    Neurophysiological studies have shown that parietal mirror neurons encode not only actions but also the goal of these actions. Although some mirror neurons will fire whenever a certain action is perceived (goal-independently), most will only fire if the motion is perceived as part of an action with a specific goal. This result is important for the action-understanding hypothesis as it provides a potential neurological basis for such a cognitive ability. It is also relevant for the design of artificial cognitive systems, in particular robotic systems that rely on computational models of the mirror system in their interaction with other agents. Yet, to date, no computational model has explicitly addressed the mechanisms that give rise to both goal-specific and goal-independent parietal mirror neurons. In the present paper, we present a computational model based on a self-organizing map, which receives artificial inputs representing information about both the observed or executed actions and the context in which they were executed. We show that the map develops a biologically plausible organization in which goal-specific mirror neurons emerge. We further show that the fundamental cause for both the appearance and the number of goal-specific neurons can be found in geometric relationships between the different inputs to the map. The results are important to the action-understanding hypothesis as they provide a mechanism for the emergence of goal-specific parietal mirror neurons and lead to a number of predictions: (1) Learning of new goals may mostly reassign existing goal-specific neurons rather than recruit new ones; (2) input differences between executed and observed actions can explain observed corresponding differences in the number of goal-specific neurons; and (3) the percentage of goal-specific neurons may differ between motion primitives

    Changes in body mass index by age, gender, and socio-economic status among a cohort of Norwegian men and women (1990–2001)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Consistent with global trends, the prevalence of obesity is increasing among Norwegian adults. This study aimed to investigate individual trends in BMI (kg/m<sup>2</sup>) by age, gender, and socio-economic status over an 11-year period.</p> <p>Methods</p> <p>A cohort of 1169 adults (n = 581 men; n = 588 women) self-reported BMI during a general health interview twice administered in two regions in Norway.</p> <p>Results</p> <p>Average BMI increased significantly from 23.7 (SD = 3.4) to 25.4 (SD = 3.8), with equivalent increases for both genders. Proportion of obesity (BMI ≥ 30) increased from 4% to 11% for women and 5% to 13% for men. Of those already classified as overweight or obese in 1990, 68% had gained additional weight 10 years later, by an average increase of 2.6 BMI units. The greatest amount of weight gain occurred for the youngest adults (aged 20–29 years). Age-adjusted general linear models revealed that in 1990, women with a lower level of education had a significantly greater BMI than more educated women. In both 1990 and 2001, rural men with the highest level of household income had a greater BMI than rural men earning less income. Weight gain occurred across all education and income brackets, with no differential associations between SES strata and changes in BMI for either gender or region.</p> <p>Conclusion</p> <p>Results demonstrated significant yet gender-equivalent increases in BMI over an 11-year period within this cohort of Norwegian adults. Whereas socio-economic status exerted minimal influence on changes in BMI over time, young adulthood appeared to be a critical time period at which accelerated weight gain occurred.</p

    The NASA Roadmap to Ocean Worlds

    Get PDF
    In this article, we summarize the work of the NASA Outer Planets Assessment Group (OPAG) Roadmaps to Ocean Worlds (ROW) group. The aim of this group is to assemble the scientific framework that will guide the exploration of ocean worlds, and to identify and prioritize science objectives for ocean worlds over the next several decades. The overarching goal of an Ocean Worlds exploration program as defined by ROW is to identify ocean worlds, characterize their oceans, evaluate their habitability, search for life, and ultimately understand any life we find. The ROW team supports the creation of an exploration program that studies the full spectrum of ocean worlds, that is, not just the exploration of known ocean worlds such as Europa but candidate ocean worlds such as Triton as well. The ROW team finds that the confirmed ocean worlds Enceladus, Titan, and Europa are the highest priority bodies to target in the near term to address ROW goals. Triton is the highest priority candidate ocean world to target in the near term. A major finding of this study is that, to map out a coherent Ocean Worlds Program, significant input is required from studies here on Earth; rigorous Research and Analysis studies are called for to enable some future ocean worlds missions to be thoughtfully planned and undertaken. A second finding is that progress needs to be made in the area of collaborations between Earth ocean scientists and extraterrestrial ocean scientists

    Decoding Brain Activity Associated with Literal and Metaphoric Sentence Comprehension Using Distributional Semantic Models

    Get PDF
    Recent years have seen a growing interest within the natural language processing (NLP)community in evaluating the ability of semantic models to capture human meaning representation in the brain. Existing research has mainly focused on applying semantic models to de-code brain activity patterns associated with the meaning of individual words, and, more recently, this approach has been extended to sentences and larger text fragments. Our work is the first to investigate metaphor process-ing in the brain in this context. We evaluate a range of semantic models (word embeddings, compositional, and visual models) in their ability to decode brain activity associated with reading of both literal and metaphoric sentences. Our results suggest that compositional models and word embeddings are able to capture differences in the processing of literal and metaphoric sentences, providing sup-port for the idea that the literal meaning is not fully accessible during familiar metaphor comprehension
    corecore