13 research outputs found

    Ammonium recovery from municipal wastewater by ion exchange: Development and application of a procedure for sorbent selection

    Get PDF
    Ion exchange represents one of the most promising processes for ammonium recovery from municipal wastewater (MWW). However, most previous studies on ammonium ion exchange did not optimize the process or evaluate its robustness under real operational conditions. This experimental study aimed at (i) developing a procedure for the selection of a sorbent for selective ammonium removal/recovery from MWW, (ii) validating the procedure by applying it to several sorbents, (iii) performing a preliminary optimization and robustness assessment of ammonium removal/recovery with the selected sorbent. The application of the procedure to natural and synthetic zeolites and a cation exchange resin confirmed that batch isotherm tests need to be integrated by continuous-flow tests. The selected sorbent, a natural mixture of Chabazite and Phillipsite, resulted in high performances in terms of cation exchange capacity (33 mgN gdry resin-1), ammonium operating capacity (5.2 mgN gdry resin-1), ammonium recovery yield (78-91%) and selectivity towards ammonium. The process performances resulted stable during 7 adsorption/desorption cycles conducted with MWW treatment plant effluents in a 60-cm column. The switch to a highly saline effluent produced in a hotspot of seawater intrusion did not determine significant changes in performances. Contact time was reduced to 6 min without any decrease in performances. Potassium – well tolerated by crops – was selected as the regenerating agent, in the perspective to produce a desorbed product to be re-used as fertilizer. The study shows that Chabazite/Phillipsite has a high capacity to recover ammonium from MWW in a circular economy approach

    Perceptions of the appropriate response to norm violation in 57 societies

    Get PDF
    An Author Correction to this article: DOI: 10.1038/s41467-021-22955-x.Norm enforcement may be important for resolving conflicts and promoting cooperation. However, little is known about how preferred responses to norm violations vary across cultures and across domains. In a preregistered study of 57 countries (using convenience samples of 22,863 students and non-students), we measured perceptions of the appropriateness of various responses to a violation of a cooperative norm and to atypical social behaviors. Our findings highlight both cultural universals and cultural variation. We find a universal negative relation between appropriateness ratings of norm violations and appropriateness ratings of responses in the form of confrontation, social ostracism and gossip. Moreover, we find the country variation in the appropriateness of sanctions to be consistent across different norm violations but not across different sanctions. Specifically, in those countries where use of physical confrontation and social ostracism is rated as less appropriate, gossip is rated as more appropriate.Peer reviewe

    Root angle is controlled by EGT1in cereal crops employing anantigravitropic mechanism

    Get PDF
    Root angle in crops represents a key trait for efficient capture of soil resources. Root angle is determined by competing gravitropic versus anti-gravitropic offset (AGO) mechanisms. Here we report a new root angle regulatory gene termed ENHANCED GRAVITROPISM1 (EGT1) that encodes a putative AGO component, whose loss of function enhances root gravitropism. Mutations in barley and wheat EGT1 genes confer a striking root phenotype, where every root class adopts a steeper growth angle. EGT1 encodes a F-box and Tubby domain containing protein which is highly conserved across plant species. Haplotype analysis found that natural allelic variation at the barley EGT1 locus impacts root angle. Gravitropic assays indicated that Hvegt1 roots bend more rapidly than wildtype. Transcript profiling revealed Hvegt1 roots deregulate ROS homeostasis and cell wall-loosening enzymes and cofactors. ROS imaging shown that Hvegt1 root basal meristem and elongation zone tissues have reduced levels. Atomic Force Microscopy measurements detected elongating Hvegt1 root cortical cell walls are significantly less stiff than wildtype. In situ analysis identified HvEGT1 is expressed in elongating cortical and stele tissues, which are distinct from known root gravitropic perception and response tissues in the columella and epidermis, respectively. We propose that EGT1 controls root angle by regulating cell wall stiffness in elongating root cortical tissue, counteracting the gravitropic machinery’s known ability to bend the root via its outermost tissues. We conclude that root angle is controlled by EGT1 in cereal crops employing a novel anti-gravitropic mechanism

    Anger and disgust shape judgments of social sanctions across cultures, especially in high individual autonomy societies

    Get PDF
    When someone violates a social norm, others may think that some sanction would be appropriate. We examine how the experience of emotions like anger and disgust relate to the judged appropriateness of sanctions, in a pre-registered analysis of data from a large-scale study in 56 societies. Across the world, we find that individuals who experience anger and disgust over a norm violation are more likely to endorse confrontation, ostracism and, to a smaller extent, gossip. Moreover, we find that the experience of anger is consistently the strongest predictor of judgments of confrontation, compared to other emotions. Although the link between state-based emotions and judgments may seem universal, its strength varies across countries. Aligned with theoretical predictions, this link is stronger in societies, and among individuals, that place higher value on individual autonomy. Thus, autonomy values may increase the role that emotions play in guiding judgments of social sanctions

    FIT4REUSE. WP3. Regeneration and modelling of a phosphorous removal and recovery hybrid ion exchange resin after long term operation with municipal wastewater

    No full text
    Adsorption represents one of the most promising process for phosphorous (P) removal and recovery from municipal wastewater, but questions about its long-term stability remain. The goals of this work were (i) to assess changes in morphology and adsorption performances of hybrid anion exchanger (HAIX) LayneRT after 2.5 years of operation in a 10 m3 d-1 demonstration plant fed with secondary-treated municipal wastewater, (ii) to optimize the LayneRT regeneration procedure, and (iii) to evaluate the suitability of the ion exchange model to describe P adsorption on LayneRT. LayneRT is composed of hydrated ferric nanoparticles dispersed in a strong base anion exchange resin. Batch and continuous flow adsorption/desorption tests were conducted with the resin used for 2.5 years, regenerated with two alternative solutions: NaOH, reactivating mainly the iron nanoparticles active sites, and NaOH + NaCl, also regenerating the active sites of the ion exchange media. The physicochemical characterization by Scanning Electron Microscope indicated that regeneration by NaOH significantly reduced the deterioration of the resin surface, even after 59 adsorption/desorption cycles. Lab-scale continuous flow tests showed that the resin regenerated with either solution featured P adsorption performances very close to that of the virgin resin. The isotherm tests showed that P adsorption by LayneRT was effectively simulated with the ion exchange model. This study confirms that LayneRT is a durable, resistant and promising media for P recovery from wastewater

    Ammonium recovery from municipal wastewater by ion exchange

    No full text
    Ion exchange represents one of the most promising processes for ammonium recovery from municipal wastewater (MWW). However, most previous studies on ammonium ion exchange did not optimize the process or evaluate its robustness under real operational conditions. This experimental study aimed at (i) developing a procedure for the selection of a sorbent for selective ammonium removal/recovery from MWW, (ii) validating the procedure by applying it to several sorbents, (iii) performing a preliminary optimization and robustness assessment of ammonium removal/recovery with the selected sorbent. The application of the procedure to natural and synthetic zeolites and a cation exchange resin confirmed that batch isotherm tests need to be integrated by continuous-flow tests. The selected sorbent, a natural mixture of Chabazite and Phillipsite, resulted in high performances in terms of cation exchange capacity (33 mgN gdry resin-1), ammonium operating capacity (5.2 mgN gdry resin-1), ammonium recovery yield (78-91%) and selectivity towards ammonium. The process performances resulted stable during 7 adsorption/desorption cycles conducted with MWW treatment plant effluents in a 60-cm column. The switch to a highly saline effluent produced in a hotspot of seawater intrusion did not determine significant changes in performances. Contact time was reduced to 6 min without any decrease in performances. Potassium – well tolerated by crops – was selected as the regenerating agent, in the perspective to produce a desorbed product to be re-used as fertilizer. The study shows that Chabazite/Phillipsite has a high capacity to recover ammonium from MWW in a circular economy approach

    Regeneration and modelling of a phosphorous removal and recovery hybrid ion exchange resin after long term operation with municipal wastewater

    No full text
    Adsorption represents one of the most promising process for phosphorous (P) removal and recovery from municipal wastewater, but questions about its long-term stability remain. The goals of this work were (i) to assess changes in morphology and adsorption performances of hybrid anion exchanger (HAIX) LayneRT after 2.5 years of operation in a 10 m3 d−1 demonstration plant fed with secondary-treated municipal wastewater, (ii) to optimize the LayneRT regeneration procedure, and (iii) to evaluate the suitability of the ion exchange model to describe P adsorption on LayneRT. LayneRT is composed of hydrated ferric nanoparticles dispersed in a strong base anion exchange resin. Batch and continuous flow adsorption/desorption tests were conducted with the resin used for 2.5 years, regenerated with two alternative solutions: NaOH, reactivating mainly the iron nanoparticles active sites, and NaOH + NaCl, also regenerating the active sites of the ion exchange media. The physicochemical characterization by Scanning Electron Microscope indicated that regeneration by NaOH significantly reduced the deterioration of the resin surface, even after 59 adsorption/desorption cycles. Lab-scale continuous flow tests showed that the resin regenerated with either solution featured P adsorption performances very close to that of the virgin resin. The isotherm tests showed that P adsorption by LayneRT was effectively simulated with the ion exchange model. This study confirms that LayneRT is a durable, resistant and promising media for P recovery from wastewater

    ENHANCED GRAVITROPISM 2 encodes a STERILE ALPHA MOTIF–containing protein that controls root growth angle in barley and wheat

    Get PDF
    The root growth angle defines how roots grow toward the gravity vector and is among the most important determinants of root system architecture. It controls water uptake capacity, nutrient use efficiency, stress resilience, and, as a consequence, yield of crop plants. We demonstrated that the egt2 (enhanced gravitropism 2) mutant of barley exhibits steeper root growth of seminal and lateral roots and an auxin-independent higher responsiveness to gravity compared to wild-type plants. We cloned the EGT2 gene by a combination of bulked-segregant analysis and whole genome sequencing. Subsequent validation experiments by an independent CRISPR/Cas9 mutant allele demonstrated that egt2 encodes a STERILE ALPHA MOTIF domain–containing protein. In situ hybridization experiments illustrated that EGT2 is expressed from the root cap to the elongation zone. We demonstrated the evolutionary conserved role of EGT2 in root growth angle control between barley and wheat by knocking out the EGT2 orthologs in the A and B genomes of tetraploid durum wheat. By combining laser capture microdissection with RNA sequencing, we observed that seven expansin genes were transcriptionally down-regulated in the elongation zone. This is consistent with a role of EGT2 in this region of the root where the effect of gravity sensing is executed by differential cell elongation. Our findings suggest that EGT2 is an evolutionary conserved regulator of root growth angle in barley and wheat that could be a valuable target for root-based crop improvement strategies in cereal

    Root angle is controlled by EGT1 in cereal crops employing an antigravitropic mechanism

    No full text
    Root angle in crops represents a key trait for efficient capture of soil resources. Root angle is determined by competing gravitropic versus antigravitropic offset (AGO) mechanisms. Here we report a root angle regulatory gene termed ENHANCED GRAVITROPISM1 (EGT1) that encodes a putative AGO component, whose loss-of-function enhances root gravitropism. Mutations in barley and wheat EGT1 genes confer a striking root phenotype, where every root class adopts a steeper growth angle. EGT1 encodes an F-box and Tubby domain-containing protein that is highly conserved across plant species. Haplotype analysis found that natural allelic variation at the barley EGT1 locus impacts root angle. Gravitropic assays indicated that Hvegt1 roots bend more rapidly than wild-type. Transcript profiling revealed Hvegt1 roots deregulate reactive oxygen species (ROS) homeostasis and cell wall-loosening enzymes and cofactors. ROS imaging shows that Hvegt1 root basal meristem and elongation zone tissues have reduced levels. Atomic force microscopy measurements detected elongating Hvegt1 root cortical cell walls are significantly less stiff than wild-type. In situ analysis identified HvEGT1 is expressed in elongating cortical and stele tissues, which are distinct from known root gravitropic perception and response tissues in the columella and epidermis, respectively. We propose that EGT1 controls root angle by regulating cell wall stiffness in elongating root cortical tissue, counteracting the gravitropic machinery’s known ability to bend the root via its outermost tissues. We conclude that root angle is controlled by EGT1 in cereal crops employing an antigravitropic mechanism
    corecore