106 research outputs found

    MicroRNA-125b transforms myeloid cell lines by repressing multiple mRNA

    Get PDF
    Background: We previously described a t(2;11)(p21;q23) chromosomal translocation found in patients with myelodysplasia or acute myeloid leukemia that leads to over-expression of the microRNA miR-125b, and we showed that transplantation of mice with murine stem/progenitor cells overexpressing miR-125b is able to induce leukemia. In this study, we investigated the mechanism of myeloid transformation by miR-125b. Design and Methods: To investigate the consequences of miR-125b over-expression on myeloid differentiation, apoptosis and proliferation, we used the NB4 and HL60 human promyelocytic cell lines and the 32Dclone3 murine promyelocytic cell line. To test whether miR-125b is able to transform myeloid cells, we used the non-tumorigenic and interleukin-3-dependent 32Dclone3 cell line over-expressing miR-125b, in xenograft experiments in nude mice and in conditions of interleukin-3 deprivation. To identify new miR-125b targets, we compared, by RNA-sequencing, the transcriptome of cell lines that do or do not over-express miR-125b. Results: We showed that miR-125b over-expression blocks apoptosis and myeloid differentiation and enhances proliferation in both species. More importantly, we demonstrated that miR-125b is able to transform the 32Dclone3 cell line by conferring growth independence from interleukin-3; xenograft experiments showed that these cells form tumors in nude mice. Using RNA-sequencing and quantitative real-time polymerase chain reaction experiments, we identified multiple miR-125b targets. We demonstrated that ABTB1, an anti-proliferative factor, is a new direct target of miR-125b and we confirmed that CBFB, a transcription factor involved in hematopoiesis, is also targeted by miR-125b. MiR-125b controls apoptosis by down-regulating genes involved in the p53 pathway including BAK1 and TP53INP1. Conclusions: This study demonstrates that in a myeloid context, miR-125b is an oncomiR able to transform cell lines. miR-125b blocks myeloid differentiation in part by targeting CBFB, blocks apoptosis through down-regulation of multiple genes involved in the p53 pathway, and confers a proliferative advantage to human and mouse myeloid cell lines in part by targeting ABTB1.Leukemia & Lymphoma Society of AmericaNational Institutes of Health (U.S.) (NIH grant DK068348)National Institutes of Health (U.S.) (NIH grant 5P01 HL066105

    MicroRNAs: the primary cause or a determinant of progression in leukemia?

    Get PDF
    available in PMC 2011 October 10.Leukemia is a complex disease with many different types and subtypes caused by a huge diversity of genetic and epigenetic aberrations. Until recently, alterations of protein-coding genes were thought to be the sole cause of tumorigenesis. With the recent discovery of multiple types of non-coding RNAs, it has become evident that mutations in these also contribute to the development of cancer. Among the non-coding RNAs, microRNAs play a crucial role in cancer owing to their involvement in fundamental processes such as apoptosis, differentiation and proliferation. MicroRNAs are small noncoding RNAs (approximately 19–25 nucleotides in length) that bind to and downregulate multiple mRNA targets; in mammals, the production of over a third of all proteins is regulated by microRNAs [3]. Several studies demonstrated that microRNAs are involved in leukemia progression but their role as the primary cause or a determinant of progression in leukemia has been unclear. Some have been identified as oncogenes or tumor suppressor genes, which suggests that they are playing a central role in tumorigenesis, while others appear to be associated with a specific stage in disease progression. Deciphering the exact role of microRNAs in oncogenesis is important in order to improve the diagnosis and treatment of leukemia patients.National Institutes of Health (U.S.) (NIH grant DK068348)National Institutes of Health (U.S.) (NIH Grant 5P01 HL066105)Leukemia & Lymphoma Society of America (Recherche sur le Cancer (ARC) fellowship

    t(7;9)(q11;p13)

    Get PDF
    Review on t(7;9)(q11;p13), with data on clinics, and the genes involved

    Whole-exome sequencing in osteosarcoma reveals important heterogeneity of genetic alterations

    Get PDF
    BACKGROUND: Whole-genome sequencing studies have recently shown that osteosarcomas (OSs) display high rates of structural variation, i.e. they contain many somatic mutations and copy number alterations. TP53 and RB1 show recurrent somatic alterations in concordant studies, suggesting that they could be key players in bone oncogenesis. PATIENTS AND METHODS: we carried out whole-genome sequencing of DNA from seven high-grade OS samples matched with normal tissue from the same patients. RESULTS: We confirmed the presence of genetic alterations of the TP53 (including novel unreported mutations) and RB1 genes. Most interestingly, we identified a total of 84 point mutations and 4 deletions related to 82 different genes in OS samples, of which only 15 have been previously reported. Interestingly, the number of mutated genes (ranging from 4 to 8) was lower in TP53mut cases compared with TP53wt cases (ranging from 14 to 45). This was also true for the mutated RB1 case. We also observed that a dedifferentiated OS harboring MDM2 amplification did not carry any other mutations. CONCLUSION: This study suggests that bone oncogenesis driven by TP53 or RB1 mutations occurs on a background of relative genetic stability and that the dedifferentiated OS subtype represents a clinico-pathological entity with distinct oncogenic mechanisms and thus requires different therapeutic managemen

    Myeloid cell differentiation arrest by miR-125b-1 in myelodysplasic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation

    Get PDF
    Most chromosomal translocations in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) involve oncogenes that are either up-regulated or form part of new chimeric genes. The t(2;11)(p21;q23) translocation has been cloned in 19 cases of MDS and AML. In addition to this, we have shown that this translocation is associated with a strong up-regulation of miR-125b (from 6- to 90-fold). In vitro experiments revealed that miR-125b was able to interfere with primary human CD34+ cell differentiation, and also inhibited terminal (monocytic and granulocytic) differentiation in HL60 and NB4 leukemic cell lines. Therefore, miR-125b up-regulation may represent a new mechanism of myeloid cell transformation, and myeloid neoplasms carrying the t(2;11) translocation define a new clinicopathological entity

    Kras oncogene ablation prevents resistance in advanced lung adenocarcinomas

    Get PDF
    KRASG12C inhibitors have revolutionized the clinical management of patients with KRASG12C-mutant lung adenocarcinoma. However, patient exposure to these inhibitors leads to the rapid onset of resistance. In this study, we have used genetically engineered mice to compare the therapeutic efficacy and the emergence of tumor resistance between genetic ablation of mutant Kras expression and pharmacological inhibition of oncogenic KRAS activity. Whereas Kras ablation induces massive tumor regression and prevents the appearance of resistant cells in vivo, treatment of KrasG12C/Trp53-driven lung adenocarcinomas with sotorasib, a selective KRASG12C inhibitor, caused a limited antitumor response similar to that observed in the clinic, including the rapid onset of resistance. Unlike in human tumors, we did not observe mutations in components of the RAS-signaling pathways. Instead, sotorasib-resistant tumors displayed amplification of the mutant Kras allele and activation of xenobiotic metabolism pathways, suggesting that reduction of the on-target activity of KRASG12C inhibitors is the main mechanism responsible for the onset of resistance. In sum, our results suggest that resistance to KRAS inhibitors could be prevented by achieving a more robust inhibition of KRAS signaling mimicking the results obtained upon Kras ablation.This work was supported by grants from the European Research Council (ERC-GA 695566, THERACAN); the Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación (MCIN/AEI/10.13039/501100011033) (grant RTC2017-6576-1), cofunded by ERDF “A way of making Europe”; the Autonomous Community of Madrid (B2017/BMD-3884 iLung-CM), cofunded by FSE and ERDF “A way of making Europe”; the CRIS Cancer Foundation, the Scientific Foundation of the Spanish Association Against Cancer (GC166173694BARB); an ERA PerMed grant, funded by the Instituto de Salud Carlos III (AC20/00114), the Scientific Foundation of the Spanish Association Against Cancer (PERME20707BARB) and the European Union’s Horizon 2020 program (779282) to MB; and the Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación (grant RTI2018-094664-B-I00), cofunded by ERDF “A way of making Europe” to MM and MB. Additional funding included grants from the Spanish National Research and Development Plan, Instituto de Salud Carlos III, ERDF “A way of making Europe” (PI20/01837 and DTS19/00111); the Scientific Foundation of the Spanish Association Against Cancer (LABAE20049RODR) to SRP; the Instituto de Salud Carlos III (PI19/00514), cofunded by ERDF “A way of making Europe” to CG; the Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación (grant PID2020-116705RB-I00); and the Scientific Foundation of the Spanish Association Against Cancer (LABAE211678DROS) to MD. MB is a recipient of an endowed chair from the AXA Research Fund. M Salmón was supported by a predoctoral contract “Severo Ochoa” (BES-2016-079096) from the Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación. OB is a recipient of a fellowship from the Formación de Personal Investigador (FPI) program of the Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación. FFG was supported by a Formación de Profesorado Universitario (FPU) fellowship from the Ministerio de Universidades

    Digital transformation of health and care to sustain Planetary Health : The MASK proof-of-concept for airway diseases-POLLAR symposium under the auspices of Finland's Presidency of the EU, 2019 and MACVIA-France, Global Alliance against Chronic Respiratory Diseases (GARD, WH0) demonstration project, Reference Site Collaborative Network of the European Innovation Partnership on Active and Healthy Ageing

    Get PDF
    In December 2019, a conference entitled "Europe That Protects: Safeguarding Our Planet, Safeguarding Our Health" was held in Helsinki. It was co-organized by the Finnish Institute for Health and Welfare, the Finnish Environment Institute and the European Commission, under the auspices of Finland's Presidency of the EU. As a side event, a symposium organized as the final POLLAR (Impact of air POLLution on Asthma and Rhinitis) meeting explored the digital transformation of health and care to sustain planetary health in airway diseases. The Finnish Allergy Programme collaborates with MASK (Mobile Airways Sentinel NetworK) and can be considered as a proof-of-concept to impact Planetary Health. The Good Practice of DG Sante (The Directorate-General for Health and Food Safety) on digitally-enabled, patient-centred care pathways is in line with the objectives of the Finnish Allergy Programme. The ARIACARE-Digital network has been deployed in 25 countries. It represents an example of the digital cross-border exchange of real-world data and experience with the aim to improve patient care. The integration of information technology tools for climate, weather, air pollution and aerobiology in mobile Health applications will enable the development of an alert system. Citizens will thus be informed about personal environmental threats, which may also be linked to indicators of Planetary Health and sustainability. The digital transformation of the public health policy was also proposed, following the experience of the Agency for Health Quality and Assessment of Catalonia (AQuAS).Peer reviewe

    The Role of Mobile Health Technologies in Allergy Care:an EAACI Position Paper

    Get PDF
    Mobile health (mHealth) uses mobile communication devices such as smartphones and tablet computers to support and improve health-related services, data and information flow, patient self-management, surveillance, and disease management from the moment of first diagnosis to an optimized treatment. The European Academy of Allergy and Clinical Immunology created a task force to assess the state of the art and future potential of mHealth in allergology. The task force endorsed the "Be He@lthy, Be Mobile" WHO initiative and debated the quality, usability, efficiency, advantages, limitations, and risks of mobile solutions for allergic diseases. The results are summarized in this position paper, analyzing also the regulatory background with regard to the "General Data Protection Regulation" and Medical Directives of the European Community. The task force assessed the design, user engagement, content, potential of inducing behavioral change, credibility/accountability, and privacy policies of mHealth products. The perspectives of healthcare professionals and allergic patients are discussed, underlining the need of thorough investigation for an effective design of mHealth technologies as auxiliary tools to improve quality of care. Within the context of precision medicine, these could facilitate the change in perspective from clinician- to patient-centered care. The current and future potential of mHealth is then examined for specific areas of allergology, including allergic rhinitis, aerobiology, allergen immunotherapy, asthma, dermatological diseases, food allergies, anaphylaxis, insect venom, and drug allergy. The impact of mobile technologies and associated big data sets are outlined. Facts and recommendations for future mHealth initiatives within EAACI are listed
    corecore