35 research outputs found

    Ozone stress as a driving force of sesquiterpene emissions: a suggested parameterisation

    Get PDF
    Sesquiterpenes (C15H24) are semi-volatile organic compounds emitted by vegetation and are of interest in atmospheric research because they influence the oxidative capacity of the atmosphere and contribute to the formation of secondary organic aerosols. However, little is known about their emission pattern and no established parameterisation is available for global emission models. The aim of this study is to investigate a Central European spruce forest and its emission response to meteorological and environmental parameters, looking for a parameterisation that incorporates heat and oxidative stress as the main driving forces of the induced emissions. Therefore, a healthy ca. 80 yr old Norway spruce (Picea abies) tree was selected and a dynamical vegetation enclosure technique was applied from April to November 2011. The emissions clearly responded to temperature changes with small variations in the β-factor along the year (βspring = 0.09 ± 0.01, βsummer = 0.12 ± 0.02, βautumn = 0.11 ± 0.02). However, daily calculated values revealed a vast amount of variability in temperature dependencies ((0.02 ± 0.002) < β < (0.27 ± 0.04)) with no distinct seasonality. By separating the complete dataset in 10 different ozone regimes, we found that in moderately or less polluted atmospheric conditions the main driving force of sesquiterpene emissions is the temperature, but when ambient ozone mixing ratios exceed a critical threshold of (36.6 ± 3.9) ppbv, the emissions become primarily correlated with ozone. Considering the complete dataset, cross correlation analysis resulted in highest correlation with ambient ozone mixing ratios (CCO3 = 0.63 ± 0.01; CCT = 0.47 ± 0.02 at t = 0 h for temperature) with a time shift 2–4 h prior to the emissions. An only temperature dependent algorithm was found to substantially underestimate the induced emissions (20% of the measured; R2 = 0.31). However, the addition of an ozone dependent term improved substantially the fitting between measured and modelled emissions (81% of the modelled emissions could be explained by the measurements; R2 = 0.63), providing confidence about the reliability of the suggested parameterisation for the spruce forest site investigated

    On-line field measurements of BVOC emissions from Norway spruce (Picea abies) at the hemiboreal SMEAR-Estonia site under autumn conditions

    Get PDF
    We investigated biogenic volatile organic compound (BVOC) emissions from a Norway spruce (Picea abies) in a hemiboreal mixed forest in autumn. Measurements were performed at the SMEAR-Estonia forest station, using PTR-MS techniques and a dynamic branch enclosure system. Parallel to BVOC measurements, atmospheric (CO2, CH4, H2O, CO) and meteorological (temperature, relative humidity, global radiation, wind speed, precipitation) parameters were monitored in the ambient atmosphere and inside the enclosure (temperature, relative humidity, ozone). Prior to the measuring period, a new inlet line consisting of 19.4 m of heated and isolated glass tube was constructed. The new inlet system allowed the on-line detection and calculation of sesquiterpene (SQT) emission rates for the first time for a hemiboreal forest site. In total, 12 atmospherically relevant BVOCs were continuously monitored during the measurement campaign and the emission rates of terpenoid species and predominant oxygenated VOCs were estimated, with monoterpenes to be emitted the most, followed by acetone, acetaldehyde and sesquiterpenes

    Ozone stress as a driving force of sesquiterpene emissions: a suggested parameterization [Discussion paper]

    Get PDF
    Sesquiterpenes (C15H24) are semi-volatile organic compounds emitted by vegetation and are of interest in atmospheric research because they influence the oxidative capacity of the atmosphere and contribute to the formation of secondary organic aerosols. However, little is known about their emission pattern and no established parameterization is available for global emission models. The aim of this study is to investigate a Central European spruce forest and its emission response to meteorological and environmental parameters, looking for a parameterization that incorporates heat and oxidative stress as the main driving forces of the induced emissions. Therefore, a healthy ca. 80 yr old Norway spruce (Picea abies) tree was selected and a dynamical vegetation enclosure technique was applied from April to November 2011. The emissions clearly responded to temperature changes with small variations in the β-factor along the year (βspring=0.09 ± 0.01, βsummer=0.12 ± 0.02, βautumn=0.11 ± 0.02). However, daily calculated values revealed a vast amount of variability in temperature dependencies ((0.02 ± 0.002)< β<(0.27 ± 0.04)) with no distinct seasonality. By separating the complete dataset in 10 different ozone regimes, we found that in moderately or less polluted atmospheric conditions the main driving force of sesquiterpene emissions is the temperature, but when ambient ozone mixing ratios exceed a~critical threshold of (36.6 ± 3.9) ppbv, the emissions become primarily correlated with ozone. Considering the complete dataset, cross correlation analysis resulted in highest correlation with ambient ozone mixing ratios (CCO3=0.63 ± 0.01; CCT=0.47 ± 0.02 at t=0 h for temperature) with a time shift 2–4 h prior to the emissions. An only temperature dependent algorithm was found to substantially underestimate the induced emissions (20 % of the measured; R2=0.31). However, the addition of an ozone dependent term improved substantially the fitting between measured and modeled emissions (81 % of the measured; R2=0.63), providing confidence about the reliability of the suggested parameterization for the spruce forest site investigated

    Seasonal measurements of total OH reactivity emission rates from Norway spruce in 2011

    Get PDF
    Numerous reactive volatile organic compounds (VOCs) are emitted into the atmosphere by vegetation. Most biogenic VOCs are highly reactive towards the atmosphere's most important oxidant, the hydroxyl (OH) radical. One way to investigate the chemical interplay between biosphere and atmosphere is through the measurement of total OH reactivity, the total loss rate of OH radicals. This study presents the first determination of total OH reactivity emission rates (measurements via the comparative reactivity method) based on a branch cuvette enclosure system mounted on a Norway spruce (Picea abies) throughout spring, summer and autumn 2011. In parallel VOC emission rates were monitored by a second proton-transfer-reaction mass spectrometer (PTR-MS), and total ozone (O3) loss rates were obtained inside the cuvette. Total OH reactivity emission rates were in general temperature and light dependent, showing strong diel cycles with highest values during daytime. Monoterpene emissions contributed most, accounting for 56–69% of the measured total OH reactivity flux in spring and early summer. However, during late summer and autumn the monoterpene contribution decreased to 11–16%. At this time, a large missing fraction of the total OH reactivity emission rate (70–84%) was found when compared to the VOC budget measured by PTR-MS. Total OH reactivity and missing total OH reactivity emission rates reached maximum values in late summer corresponding to the period of highest temperature. Total O3 loss rates within the closed cuvette showed similar diel profiles and comparable seasonality to the total OH reactivity fluxes. Total OH reactivity fluxes were also compared to emissions from needle storage pools predicted by a temperature-only-dependent algorithm. Deviations of total OH reactivity fluxes from the temperature-only-dependent emission algorithm were observed for occasions of mechanical and heat stress. While for mechanical stress, induced by strong wind, measured VOCs could explain total OH reactivity emissions, during heat stress they could not. The temperature-driven algorithm matched the diel variation of total OH reactivity emission rates much better in spring than in summer, indicating a different production and emission scheme for summer and early autumn. During these times, unmeasured and possibly unknown primary biogenic emissions contributed significantly to the observed total OH reactivity flux

    Seasonal measurements of total OH reactivity fluxes, total ozone loss rates and missing emissions from Norway spruce in 2011 [Discussion paper]

    Get PDF
    Numerous reactive volatile organic compounds (VOCs) are emitted into the atmosphere by vegetation. Most biogenic VOCs are highly reactive towards the atmosphere's most important oxidant, the hydroxyl (OH) radical. One way to investigate the chemical interplay between biosphere and atmosphere is through the measurement of total OH reactivity, the total loss rate of OH radicals. This study presents the first determination of total OH reactivity emission rates (measurements via the Comparative Reactivity Method) based on a branch cuvette enclosure system mounted on a Norway spruce (Picea abies) throughout spring, summer and autumn 2011. In parallel separate VOC emission rates were monitored by a Proton Transfer Reaction-Mass Spectrometer (PTR-MS), and total ozone (O3) loss rates were obtained inside the cuvette. Total OH reactivity emission rates were in general temperature and light dependent, showing strong diel cycles with highest values during daytime. Monoterpene emissions contributed most, accounting for 56–69% of the measured total OH reactivity flux in spring and early summer. However, during late summer and autumn the monoterpene contribution decreased to 11–16%. At this time, a large missing fraction of the total OH reactivity emission rate (70–84%) was found when compared to the VOC budget measured by PTR-MS. Total OH reactivity and missing total OH reactivity emission rates reached maximum values in late summer corresponding to the period of highest temperature. Total O3 loss rates within the closed cuvette showed similar diel profiles and comparable seasonality to the total OH reactivity fluxes. Total OH reactivity fluxes were also compared to emissions from needle storage pools predicted by a temperature-only dependent algorithm. Deviations of total OH reactivity fluxes from the temperature-only dependent emission algorithm were observed for occasions of mechanical and heat stress. While for mechanical stress, induced by strong wind, measured VOCs could explain total OH reactivity emissions, during heat stress they could not. The temperature driven algorithm matched the diel course much better in spring than in summer, indicating a different production and emission scheme for summer and early autumn. During these times, unmeasured and possibly unknown primary biogenic emissions contributed significantly to the observed total OH reactivity flux

    Assessment of isoprene and near-surface ozone sensitivities to water stress over the Euro-Mediterranean region

    Get PDF
    Plants emit biogenic volatile organic compounds (BVOCs) in response to changes in environmental conditions (e.g. temperature, radiation, soil moisture). In the large family of BVOCs, isoprene is by far the strongest emitted compound and plays an important role in ozone chemistry, thus affecting both air quality and climate. In turn, climate change may alter isoprene emissions by increasing temperature as well as the occurrence and intensity of severe water stresses that alter plant functioning. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) provides different parameterizations to account for the impact of water stress on isoprene emissions, which essentially reduces emissions in response to the effect of soil moisture deficit on plant productivity. By applying the regional climate–chemistry model RegCM4chem coupled to the Community Land Model CLM4.5 and MEGAN2.1, we thus performed sensitivity simulations to assess the effects of water stress on isoprene emissions and near-surface ozone levels over the Euro-Mediterranean region and across the drier and wetter summers over the 1992–2016 period using two different parameterizations of the impact of water stress implemented in the MEGAN model. Over the Euro-Mediterranean region and across the simulated summers, water stress reduces isoprene emissions on average by nearly 6 %. However, during the warmest and driest selected summers (e.g. 2003, 2010, 2015) and over large isoprene-source areas (e.g. the Balkans), decreases in isoprene emissions range from −20 % to −60 % and co-occur with negative anomalies in precipitation, soil moisture and plant productivity. Sustained decreases in isoprene emissions also occur after prolonged or repeated dry anomalies, as observed for the summers of 2010 and 2012. Although the decrease in isoprene emissions due to water stress may be important, it only reduces near-surface ozone levels by a few percent due to a dominant VOC-limited regime over southern Europe and the Mediterranean Basin. Overall, over the selected analysis region, compared to the old MEGAN parameterization, the new one leads to localized and 25 %–50 % smaller decreases in isoprene emissions and 3 %–8 % smaller reductions in near-surface ozone levels.</p

    Diel and seasonal changes of biogenic volatile organic compounds within and above an Amazonian rainforest

    Get PDF
    The Amazonian rainforest is a large tropical ecosystem, which is one of the last pristine continental terrains. This ecosystem is ideally located for the study of diel and seasonal behaviour of biogenic volatile organic compounds (BVOCs) in the absence of local human interference. In this study, we report the first atmospheric BVOC measurements at the Amazonian Tall Tower Observatory (ATTO) site, located in central Amazonia. A quadrupole proton-transfer-reaction mass spectrometer (PTR-MS), with seven ambient air inlets, positioned from near ground to about 80 m (0.05, 0.5, 4, 24, 38, 53 and 79 m above the forest floor), was deployed for BVOC monitoring. We report diel and seasonal (February-March 2013 as wet season and September 2013 as dry season) ambient mixing ratios for isoprene, monoterpenes, isoprene oxidation products, acetaldehyde, acetone, methyl ethyl ketone (MEK), methanol and acetonitrile. Clear diel and seasonal patterns were observed for all compounds. In general, lower mixing ratios were observed during night, while maximum mixing ratios were observed during the wet season (February-March 2013), with the peak in solar irradiation at 12:00 LT (local time) and during the dry season (September 2013) with the peak in temperature at 16:00 LT. Isoprene and monoterpene mixing ratios were the highest within the canopy with a median of 7.6 and 1 ppb, respectively (interquartile range (IQR) of 6.1 and 0.38 ppb) during the dry season (at 24 m, from 12:00 to 15:00 LT). The increased contribution of oxygenated volatile organic compounds (OVOCs) above the canopy indicated a transition from dominating forest emissions during the wet season (when mixing ratios were higher than within the canopy), to a blend of biogenic emission, photochemical production and advection during the dry season when mixing ratios were higher above the canopy. Our observations suggest strong seasonal interactions between environmental (insolation, temperature) and biological (phenology) drivers of leaf BVOC emissions and atmospheric chemistry. Considerable differences in the magnitude of BVOC mixing ratios, as compared to other reports of Amazonian BVOC, demonstrate the need for long-term observations at different sites and more standardized measurement procedures, in order to better characterize the natural exchange of BVOCs between the Amazonian rainforest and the atmosphere. © Author(s) 2015

    High temperature sensitivity of monoterpene emissions from global vegetation

    Get PDF
    AbstractTerrestrial vegetation emits vast amounts of monoterpenes into the atmosphere, influencing ecological interactions and atmospheric chemistry. Global emissions are simulated as a function of temperature with a fixed exponential relationship (β coefficient) across forest ecosystems and environmental conditions. We applied meta-analysis algorithms on 40 years of published monoterpene emission data and show that relationship between emissions and temperature is more sensitive and intricate than previously thought. Considering the entire dataset, a higher temperature sensitivity (β = 0.13 ± 0.01 °C−1) is derived but with a linear increase with the reported coefficients of determination (R2), indicating that co-occurring environmental factors modify the temperature sensitivity of the emissions that is primarily related to the specific plant functional type (PFT). Implementing a PFT-dependent β in a biogenic emission model, coupled with a chemistry – climate model, demonstrated that atmospheric processes are exceptionally dependent on monoterpene emissions which are subject to amplified variations under rising temperatures.</jats:p

    Strong sesquiterpene emissions from Amazonian soils

    Get PDF
    The Amazon rainforest is the world’s largest source of reactive volatile isoprenoids to the atmosphere. It is generally assumed that these emissions are products of photosynthetically driven secondary metabolism and released from the rainforest canopy from where they influence the oxidative capacity through reaction with hydroxyl radicals (OH) and ozone (O3). However, recent volatile organic compound (VOC) budgeting experiments (based on OH reactivity) show that further important sources remain to be discovered. Here we show that soil microorganisms are a strong, unaccounted source of highly reactive and previously unreported sesquiterpenes (C15H24; SQT). The emission rate and chemical speciation of soil SQTs were determined as a function of soil moisture, oxygen, and rRNA transcript abundance in the laboratory. Based on these results a model was developed to predict soil-atmosphere SQT fluxes. Simulated results compared closely with SQT flux measurements in the field, so a two-year period (2014-2015) was modelled based on in-situ rainfall and soil moisture measurements. It was found SQT emissions from a Terra Firme soil in the dry season were in comparable magnitude to current global model canopy emissions and dominated O3 reactivity on the forest floor, establishing an important ecological connection between soil microbes and atmospherically relevant SQTs

    HOx cycling during the Cyprus Photochemistry Experiment

    Get PDF
    Meeting abstract fro AOGS 2016 Beijing for an oral presentation of results from the CYPHEX 2014 measurement campaign.Abstract from attachedMax Planck Society, University of Cheste
    corecore