12 research outputs found

    Can fisheries-induced evolution shift reference points for fisheries management?

    Get PDF
    Heino, M., Baulier, L., Boukal, D. S., Ernande, B., Johnston, F. D., Mollet, F. M., Pardoe, H., Therkildsen, N. O., Uusi-Heikkilä, S., Vainikka, A., Arlinghaus, R., Dankel, D. J., Dunlop, E. S., Eikeset, A. M., Enberg, K., Engelhard G. H., Jørgensen, C., Laugen, A. T., Matsumura, S., Nusslé, S., Urbach, D., Whitlock, R., Rijnsdorp, A. D., and Dieckmann, U. 2013. Can fisheries-induced evolution shift reference points for fisheries management? - ICES Journal of Marine Science, 70: 707-721. Biological reference points are important tools for fisheries management. Reference points are not static, but may change when a population's environment or the population itself changes. Fisheries-induced evolution is one mechanism that can alter population characteristics, leading to "shifting” reference points by modifying the underlying biological processes or by changing the perception of a fishery system. The former causes changes in "true” reference points, whereas the latter is caused by changes in the yardsticks used to quantify a system's status. Unaccounted shifts of either kind imply that reference points gradually lose their intended meaning. This can lead to increased precaution, which is safe, but potentially costly. Shifts can also occur in more perilous directions, such that actual risks are greater than anticipated. Our qualitative analysis suggests that all commonly used reference points are susceptible to shifting through fisheries-induced evolution, including the limit and "precautionary” reference points for spawning-stock biomass, Blim and Bpa, and the target reference point for fishing mortality, F0.1. Our findings call for increased awareness of fisheries-induced changes and highlight the value of always basing reference points on adequately updated information, to capture all changes in the biological processes that drive fish population dynamic

    Does Sex-Selective Predation Stabilize or Destabilize Predator-Prey Dynamics?

    Get PDF
    Background: Little is known about the impact of prey sexual dimorphism on predator-prey dynamics and the impact of sexselective harvesting and trophy hunting on long-term stability of exploited populations. Methodology and Principal Findings: We review the quantitative evidence for sex-selective predation and study its longterm consequences using several simple predator-prey models. These models can be also interpreted in terms of feedback between harvesting effort and population size of the harvested species under open-access exploitation. Among the 81 predator-prey pairs found in the literature, male bias in predation is 2.3 times as common as female bias. We show that long-term effects of sex-selective predation depend on the interplay of predation bias and prey mating system. Predation on the ‘less limiting’ prey sex can yield a stable predator-prey equilibrium, while predation on the other sex usually destabilizes the dynamics and promotes population collapses. For prey mating systems that we consider, males are less limiting except for polyandry and polyandrogyny, and male-biased predation alone on such prey can stabilize otherwise unstable dynamics. On the contrary, our results suggest that female-biased predation on polygynous, polygynandrous or monogamous prey requires other stabilizing mechanisms to persist. Conclusions and Significance: Our modelling results suggest that the observed skew towards male-biased predation might reflect, in addition to sexual selection, the evolutionary history of predator-prey interactions. More focus on these phenomena can yield additional and interesting insights as to which mechanisms maintain the persistence of predator-prey pairs over ecological and evolutionary timescales. Our results can also have implications for long-term sustainability of harvesting and trophy hunting of sexually dimorphic species

    Who Eats Whom in a Pool? A Comparative Study of Prey Selectivity by Predatory Aquatic Insects

    Get PDF
    Predatory aquatic insects are a diverse group comprising top predators in small fishless water bodies. Knowledge of their diet composition is fragmentary, which hinders the understanding of mechanisms maintaining their high local diversity and of their impacts on local food web structure and dynamics. We conducted multiple-choice predation experiments using nine common species of predatory aquatic insects, including adult and larval Coleoptera, adult Heteroptera and larval Odonata, and complemented them with literature survey of similar experiments. All predators in our experiments fed selectively on the seven prey species offered, and vulnerability to predation varied strongly between the prey. The predators most often preferred dipteran larvae; previous studies further reported preferences for cladocerans. Diet overlaps between all predator pairs and predator overlaps between all prey pairs were non-zero. Modularity analysis separated all primarily nectonic predator and prey species from two groups of large and small benthic predators and their prey. These results, together with limited evidence from the literature, suggest a highly interconnected food web with several modules, in which similarly sized predators from the same microhabitat are likely to compete strongly for resources in the field (observed Pianka’s diet overlap indices >0.85). Our experiments further imply that ontogenetic diet shifts are common in predatory aquatic insects, although we observed higher diet overlaps than previously reported. Hence, individuals may or may not shift between food web modules during ontogeny

    Can fisheries-induced evolution shift reference points for fisheries management?

    Get PDF
    Biological reference points are important tools for fisheries management. Reference points are not static, butmay change when a population's environment or the population itself changes. Fisheries-induced evolution is one mechanism that can alter population characteristics, leading to "shifting" reference points by modifying the underlying biological processes or by changing the perception of a fishery system. The former causes changes in "true" reference points, whereas the latter is caused by changes in the yardsticks used to quantify a system's status. Unaccounted shifts of either kind imply that reference points gradually lose their intended meaning. This can lead to increased precaution, which is safe, but potentially costly. Shifts can also occur in more perilous directions, such that actual risks are greater than anticipated. Our qualitative analysis suggests that all commonly used reference points are susceptible to shifting through fisheries-induced evolution, including the limit and "precautionary" reference points for spawning-stock biomass, B-lim and B-pa, and the target reference point for fishing mortality, F-0.1. Our findings call for increased awareness of fisheries-induced changes and highlight the value of always basing reference points on adequately updated information, to capture all changes in the biological processes that drive fish population dynamics

    An evolutionary explanation of female-biased sexual size dimorphism in North Sea plaice, Pleuronectes platessa L

    No full text
    Sexual size dimorphism (SSD) is caused by differences in selection pressures and life-history trade-offs faced by males and females. Proximate causes of SSD may involve sex-specific mortality, energy acquisition, and energy expenditure for maintenance, reproductive tissues, and reproductive behavior. Using a quantitative, individual-based, eco-genetic model parameterized for North Sea plaice, we explore the importance of these mechanisms for female-biased SSD, under which males are smaller and reach sexual maturity earlier than females (common among fish, but also arising in arthropods and mammals). We consider two mechanisms potentially serving as ultimate causes: (a) Male investments in male reproductive behavior might evolve to detract energy resources that would otherwise be available for somatic growth, and (b) diminishing returns on male reproductive investments might evolve to reduce energy acquisition. In general, both of these can bring about smaller male body sizes. We report the following findings. First, higher investments in male reproductive behavior alone cannot explain the North Sea plaice SSD. This is because such higher reproductive investments require increased energy acquisition, which would cause a delay in maturation, leading to male-biased SSD contrary to observations. When accounting for the observed differential (lower) male mortality, maturation is postponed even further, leading to even larger males. Second, diminishing returns on male reproductive investments alone can qualitatively account for the North Sea plaice SSD, even though the quantitative match is imperfect. Third, both mechanisms can be reconciled with, and thus provide a mechanistic basis for, the previously advanced Ghiselin–Reiss hypothesis, according to which smaller males will evolve if their reproductive success is dominated by scramble competition for fertilizing females, as males would consequently invest more in reproduction than growth, potentially implying lower survival rates, and thus relaxing male–male competition. Fourth, a good quantitative fit with the North Sea plaice SSD is achieved by combining both mechanisms while accounting for sex-specific costs males incur during their spawning season. Fifth, evolution caused by fishing is likely to have modified the North Sea plaice SSD

    Ecology: Managing evolving fish stocks

    No full text
    Evolutionary impact assessment is a framework for quantifying the effects of harvest-induced evolution on the utility generated by fish stocks

    Evolutionary impact assessment: Accounting for the evolutionary consequences of fishing in an ecosystem approach to fisheries management

    Get PDF
    Managing fisheries resources to maintain healthy ecosystems is one of the main goals of the ecosystem approach to fisheries (EAF). While a number of international treaties call for the implementation of EAF, there are still gaps in the underlying methodology. One aspect that has received substantial scientific attention recently is fisheries-induced evolution (FIE). Increasing evidence indicates that intensive fishing has the potential to exert strong directional selection on life-history traits, behaviour, physiology, and morphology of exploited fish. Of particular concern is that reversing evolutionary responses to fishing can be much more difficult than reversing demographic or phenotypically plastic responses. Furthermore, like climate change, multiple agents cause FIE, with effects accumulating over time. Consequently, FIE may alter the utility derived from fish stocks, which in turn can modify the monetary value living aquatic resources provide to society. Quantifying and predicting the evolutionary effects of fishing is therefore important for both ecological and economic reasons. An important reason this is not happening is the lack of an appropriate assessment framework. We therefore describe the evolutionary impact assessment (EvoIA) as a structured approach for assessing the evolutionary consequences of fishing and evaluating the predicted evolutionary outcomes of alternative management options. EvoIA can contribute to EAF by clarifying how evolution may alter stock properties and ecological relations, support the precautionary approach to fisheries management by addressing a previously overlooked source of uncertainty and risk, and thus contribute to sustainable fisheries
    corecore