127 research outputs found

    Openings and closings in Spanish email conversations

    Get PDF
    Despite the increasing interest scholarly research has shown in the study of computer-mediated communication, there is still a need to investigate the empirical validity of assumed homogeneity of language usage over the net and focus on the social diversity and variation that characterizes any communication. With this in mind, the present paper is an investigation into the stylistic choices that a particular group of email users made when engaged in a specific activity type. More specifically, it explores the variation in the discourse practices employed to open and close emails in conversation alongside the institutional power of participants and the interactional position of each email contributing to the conversation. To carry out this study a corpus of short email conversations in Peninsular Spanish was collected (n = 240). The analysis focused on the opening and closing sequences of the emails that made up the conversations and considered opening and closing linguistic conventions as discursive practices that members of a community may use strategically. The findings revealed that the discursive practices under scrutiny were subject not only to technological but also to social and interactional constraints and thus highlighted contextual variability. Further, the high degree of sociability in the electronic episodes studied was interpreted as reflecting a ¿people first, business second¿ communicative style

    Heterozygous rare genetic variants in non-syndromic early-onset obesity

    Get PDF
    BACKGROUND: Obesity is a very heterogeneous disorder at both the clinical and molecular levels and with high heritability. Several monogenic forms and genes with strong effects have been identified for non-syndromic severe obesity. Novel therapeutic interventions are in development for some genetic forms, emphasizing the importance of determining genetic contributions. OBJECTIVE: We aimed to define the contribution of rare single-nucleotide genetic variants (RSVs) in candidate genes to non-syndromic severe early-onset obesity (EOO; body mass index (BMI) >+3 standard deviation score, <3 years). METHODS: Using a pooled DNA-sequencing approach, we screened for RSVs in 15 obesity candidate genes in a series of 463 EOO patients and 480 controls. We also analysed exome data from 293 EOO patients from the "Viva la Familia" (VLF) study as a replication dataset. RESULTS:Likely or known pathogenic RSVs were identified in 23 patients (5.0%), with 7 of the 15 genes (BDNF, FTO, MC3R, MC4R, NEGR1, PPARG and SIM1) harbouring RSVs only in cases (3.67%) and none in controls. All were heterozygous changes, either de novo (one in BDNF) or inherited from obese parents (seven maternal, three paternal), and no individual carried more than one variant. Results were replicated in the VLF study, where 4.10% of probands carried RSVs in the overrepresented genes. RSVs in five genes were either absent (LEP) or more common in controls than in cases (ADRB3, LEPR, PCSK1 and PCSK2) in both obese datasets. CONCLUSIONS: Heterozygous RSVs in several candidate genes of the melanocortin pathway are found in ~5.0% patients with EOO. These results support the clinical utility of genetic testing to identify patients who might benefit from targeted therapeutic intervention.Clara Serra-Juhé, Gabriel Á. Martos-Moreno, Francesc Bou de Pieri, Raquel Flores, Julie A. Chowen, Luis A. Pérez-Jurado, Jesús Argent

    Presence of Bacterial DNA in Thrombotic Material of Patients with Myocardial Infarction

    Get PDF
    [Abstract] Infectious agents have been suggested to be involved in etiopathogenesis of Acute Coronary Syndrome (ACS). However, the relationship between bacterial infection and acute myocardial infarction (AMI) has not yet been completely clarified. The objective of this study is to detect bacterial DNA in thrombotic material of patients with ACS with ST-segment elevation (STEMI) treated with Primary Percutaneous Coronary Intervention (PPCI). We studied 109 consecutive patients with STEMI, who underwent thrombus aspiration and arterial peripheral blood sampling. Testing for bacterial DNA was performed by probe-based real-time Polymerase Chain Reaction (PCR). 12 probes and primers were used for the detection of Aggregatibacter actinomycetemcomitans, Chlamydia pneumoniae, viridans group streptococci, Porphyromonas gingivalis, Fusobacterium nucleatum, Tannarella forsythia, Treponema denticola, Helycobacter pylori, Mycoplasma pneumoniae, Staphylococus aureus, Prevotella intermedia and Streptococcus mutans. Thus, DNA of four species of bacteria was detected in 10 of the 109 patients studied. The most frequent species was viridans group streptococci (6 patients, 5.5%), followed by Staphylococus aureus (2 patients, 1.8%). Moreover, a patient had DNA of Porphyromonas gingivalis (0.9%); and another patient had DNA of Prevotella intermedia (0.9%). Bacterial DNA was not detected in peripheral blood of any of our patients. In conclusion, DNA of four species of endodontic and periodontal bacteria was detected in thrombotic material of 10 STEMI patients. Bacterial DNA was not detected in the peripheral blood of patients with bacterial DNA in their thrombotic material. Bacteria could be latently present in plaques and might play a role in plaque instability and thrombus formation leading to ACS

    Hydro-Economic Modeling of Water Resources Management Challenges: Current Applications and Future Directions

    Get PDF
    Hydro-economic modeling (HEM) addresses research and policy questions from socioeconomic and biophysical perspectives under a broad range of water-related topics. Applications of HEM include economic evaluations of existing and new water projects, alternative water management actions or policies, risk assessments from hydro-climatic uncertainty (e.g., climate change), and the costs and benefits of mitigation and/or adaptation to such events. This paper reviews applications of HEM in five different categories: (1) climate change impacts and adaptation, (2) water–food–energy–ecosystems nexus management, (3) capability to link to other models, (4) innovative water management options, and (5) the ability to address and integrate uncertainty. We find that (i) the increasing complexity and heterogeneity of water resource management problems due to the growing demand and competition for water across economic sectors, (ii) limited availability and high costs of developing additional supplies, and (iii) emerging recognition and consideration of environmental water demands and value, have inspired new integrated hydro-economic problems and models to address issues of water–food–energy nexus sustainability, resilience, reliability through water (re)allocation based on the relative “value” of water uses. In the past decade, the field of HEM has improved the integration of ecosystem needs, but their representation is still insufficient and mostly ineffective. HEM studies address how to sustainably manage water resources, including groundwater which has become an area of particular interest in climate change adaptation. The current most used spatial and temporal resolutions (basin-scale and yearly time-step) are appropriate for planning but not for operational decisions and could be underestimating impacts from extreme events (e.g., flood risk) captured only by sub-monthly time scales. In addition, HEM primarily focuses on biophysical and economic indicators but often overlooks preferences and perspectives of stakeholders. Lastly, HEM has been widely used to analyze transboundary cooperation, showing benefits for increasing water security and economic development, particularly as climate change develops. We conclude that the field of HEM would benefit from developing more operational models and enhancing the integration of commonly neglected variables, such as social equity components, ecosystem requirements, and water quality

    Selective inhibition of HDAC6 regulates expression of the oncogenic driver EWSR1-FLI1 through the EWSR1 promoter in Ewing sarcoma

    Get PDF
    Ewing sarcoma (EWS) is an aggressive bone and soft tissue tumor of children and young adults in which the principal driver is a fusion gene, EWSR1-FLI1. Although the essential role of EWSR1-FLI1 protein in the regulation of oncogenesis, survival, and tumor progression processes has been described in-depth, little is known about the regulation of chimeric fusion-gene expression. Here, we demonstrate that the active nuclear HDAC6 in EWS modulates the acetylation status of specificity protein 1 (SP1), consequently regulating the SP1/P300 activator complex binding to EWSR1 and EWSR1-FLI1 promoters. Selective inhibition of HDAC6 impairs binding of the activator complex SP1/P300, thereby inducing EWSR1-FLI1 downregulation and significantly reducing its oncogenic functions. In addition, sensitivity of EWS cell lines to HDAC6 inhibition is higher than other tumor or non-tumor cell lines. High expression of HDAC6 in primary EWS tumor samples from patients correlates with a poor prognosis in two independent series accounting 279 patients. Notably, a combination treatment of a selective HDAC6 and doxorubicin (a DNA damage agent used as a standard therapy of EWS patients) dramatically inhibits tumor growth in two EWS murine xenograft models. These results could lead to suitable and promising therapeutic alternatives for patients with EWS.Research in the E.D.A. lab is supported by Asociación Española Contra el Cáncer (AECC), the Ministry of Science of Spain-FEDER (CIBERONC, PI1700464, PI2000003, RD06/0020/0059)S. D.G.D. and L.H.P. are supported by CIBERONC (CB16/12/00361). D.G.D., M.J.R. and L.H.P. are PhD researchers funded by the Consejería de Salud, Junta de Andalucía (PI-0197-2016, ECAI F2-0012-2018 and PI-0013-2018, respectively).Peer reviewe

    Locomotor rhythm maintenance: electrical coupling among premotor excitatory interneurons in the brainstem and spinal cord of young Xenopus tadpoles

    Get PDF
    Electrical coupling is important in rhythm generating systems. We examine its role in circuits controlling locomotion in a simple vertebrate model, the young Xenopus tadpole, where the hindbrain and spinal cord excitatory descending interneurons (dINs) that drive and maintain swimming have been characterised. Using simultaneous paired recordings, we show that most dINs are electrically coupled exclusively to other dINs (DC coupling coefficients ∼8.5%). The coupling shows typical low-pass filtering. We found no evidence that other swimming central pattern generator (CPG) interneurons are coupled to dINs or to each other. Electrical coupling potentials between dINs appear to contribute to their unusually reliable firing during swimming. To investigate the role of electrical coupling in swimming, we evaluated the specificity of gap junction blockers (18-β-GA, carbenoxolone, flufenamic acid and heptanol) in paired recordings. 18-β-GA at 40–60 μm produced substantial (84%) coupling block but few effects on cellular properties. Swimming episodes in 18-β-GA were significantly shortened (to ∼2% of control durations). At the same time, dIN firing reliability fell from nearly 100% to 62% of swimming cycles and spike synchronization weakened. Because dINs drive CPG neuron firing and are critical in maintaining swimming, the weakening of dIN activity could account for the effects of 18-β-GA on swimming. We conclude that electrical coupling among pre motor reticulospinal and spinal dINs, the excitatory interneurons that drive the swimming CPG in the hatchling Xenopus tadpole, may contribute to the maintenance of swimming as well as synchronization of activity

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research
    corecore