19 research outputs found

    Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere

    Get PDF
    Latitudinal gradients in species interactions are widely cited as potential causes or consequences of global patterns of biodiversity. However, mechanistic studies documenting changes in interactions across broad geographic ranges are limited. We surveyed predation intensity on common prey (live amphipods and gastropods) in communities of eelgrass (Zostera marina) at 48 sites across its Northern Hemisphere range, encompassing over 370 of latitude and four continental coastlines. Predation on amphipods declined with latitude on all coasts but declined more strongly along western ocean margins where temperature gradients are steeper. Whereas in situ water temperature at the time of the experiments was uncorrelated with predation, mean annual temperature strongly positively predicted predation, suggesting a more complex mechanism than simple increased metabolic activity at the time of predation. This large-scale biogeographic pattern was modified by local habitat characteristics; predation declined with higher shoot density both among and within sites. Predation rates on gastropods, by contrast, were uniformly low and varied little among sites. The high replication and geographic extent of our study not only provides additional evidence to support biogeographic variation in intensity, but also insight into the mechanisms that relate temperature and biogeographic gradients in species interactions

    Mechanisms of leukemia-induced immunosuppression

    Get PDF
    This thesis aimed to define the role of reactive oxygen species (ROS), produced by the NADPH oxidase of myeloid cells, in the regulation of lymphocyte function with focus on ROS-induced dysfunction of natural killer (NK) cells and T lymphocytes in myeloid leukemia. In Paper I, a novel mechanism is presented by which specifically activated T lymphocytes evade inactivation by ROS after antigen presentation. Antigen-presenting dendritic cells were found to induce ROS-neutralizing thiols on the surface of antigen-specific T cells, but not on T cells that lacked antigen specificity. These findings may explain why antigen-specific T cells remain viable under conditions of oxidative stress. Paper II shows that subsets of leukemic cells recovered from patients with acute myeloid leukemia (AML) produce and release ROS via a membrane-bound NADPH oxidase, and that ROS-producing leukemic cells initiate a PARP-1-dependent pathway of cell death (parthanatos) in NK cells and T cells. The results presented in Paper III demonstrate that treatment of AML patients with a NADPH oxidase inhibitor (histamine dihydrochloride) was preferentially efficacious among patients with monocytic leukemias (FAB classes M4 and M5), in which cells of the leukemic clone expressed a ROS-producing NADPH oxidase and functional histamine H2 receptors. The results presented in Paper IV imply that malignant cells recovered from patients with chronic myeloid leukemia utilize the ROS/PARP-1 axis to induce NK cell parthanatos and that PARP-1 inhibition maintains functions of T cells and NK cells under conditions of oxidative stress. Paper V aimed to define the intracellular pathways of ROS-induced PARP-1 activation with ensuing cell death in lymphocytes. The results suggest that the mitogen-activated protein kinase ERK1/2 is involved in ROS-induced signal transduction and that ERK1/2 is activated upstream of PARP-1 in ROS-dependent lymphocyte parthanatos

    Schwann cell precursors represent a neural crest-like hub state with biased multipotency

    Get PDF
    Schwann cell precursors (SCPs) are nerve-associated progenitors that can generate myelinating and non-myelinating Schwann cells but also are multipotent like the neural crest cells from which they originate. SCPs are omnipresent along outgrowing peripheral nerves throughout the body of vertebrate embryos. By using single-cell transcriptomics to generate a gene expression atlas of the entire neural crest lineage, we show that early SCPs and late migratory crest cells have similar transcriptional profiles characterised by a multipotent “hub” state containing cells biased towards traditional neural crest fates. SCPs keep diverging from the neural crest after being primed towards terminal Schwann cells and other fates, with different subtypes residing in distinct anatomical locations. Functional experiments using CRISPR-Cas9 loss-of-function further show that knockout of the common “hub” gene Sox8 causes defects in neural crest-derived cells along peripheral nerves by facilitating differentiation of SCPs towards sympathoadrenal fates. Finally, specific tumour populations found in melanoma, neurofibroma and neuroblastoma map to different stages of SCP/Schwann cell development. Overall, SCPs resemble migrating neural crest cells that maintain multipotency and become transcriptionally primed towards distinct lineages

    The VLDL receptor promotes lipotoxicity and increases mortality in mice following an acute myocardial infarction

    No full text
    Impaired cardiac function is associated with myocardial triglyceride accumulation, but it is not clear how the lipids accumulate or whether this accumulation is detrimental. Here we show that hypoxia/ischemia-induced accumulation of lipids in HL-1 cardiomyocytes and mouse hearts is dependent on expression of the VLDL receptor (VLDLR). Hypoxia-induced VLDLR expression in HL-1 cells was dependent on HIF-1α through its interaction with a hypoxia-responsive element in the Vldlr promoter, and VLDLR promoted the endocytosis of lipoproteins. Furthermore, VLDLR expression was higher in ischemic compared with nonischemic left ventricles from human hearts and was correlated with the total lipid droplet area in the cardiomyocytes. Importantly, Vldlr–/– mice showed improved survival and decreased infarct area following an induced myocardial infarction. ER stress, which leads to apoptosis, is known to be involved in ischemic heart disease. We found that ischemia-induced ER stress and apoptosis in mouse hearts were reduced in Vldlr–/– mice and in mice treated with antibodies specific for VLDLR. These findings suggest that VLDLR-induced lipid accumulation in the ischemic heart worsens survival by increasing ER stress and apoptosis

    Skin pigmentation provides evidence of convergent melanism in extinct marine reptiles

    No full text
    Throughout the animal kingdom, adaptive colouration serves critical functions ranging from inconspicuous camouflage to ostentatious sexual display, and can provide important information about the environment and biology of a particular organism1, 2. The most ubiquitous and abundant pigment, melanin, also has a diverse range of non-visual roles, including thermoregulation in ectotherms3, 4. However, little is known about the functional evolution of this important biochrome through deep time, owing to our limited ability to unambiguously identify traces of it in the fossil record2. Here we present direct chemical evidence of pigmentation in fossilized skin, from three distantly related marine reptiles: a leatherback turtle5, a mosasaur6 and an ichthyosaur7. We demonstrate that dark traces of soft tissue in these fossils are dominated by molecularly preserved eumelanin, in intimate association with fossilized melanosomes. In addition, we suggest that contrary to the countershading of many pelagic animals8, 9, at least some ichthyosaurs were uniformly dark-coloured in life. Our analyses expand current knowledge of pigmentation in fossil integument beyond that of feathers2, 10, allowing for the reconstruction of colour over much greater ranges of extinct taxa and anatomy. In turn, our results provide evidence of convergent melanism in three disparate lineages of secondarily aquatic tetrapods. Based on extant marine analogues, we propose that the benefits of thermoregulation and/or crypsis are likely to have contributed to this melanisation, with the former having implications for the ability of each group to exploit cold environments

    <it>MDM2 </it>SNP309 promoter polymorphism and <it>p53 </it>mutations in urinary bladder carcinoma stage T1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Urinary bladder carcinoma stage T1 is an unpredictable disease that in some cases has a good prognosis with only local or no recurrence, but in others can appear as a more aggressive tumor with progression to more advanced stages. The aim here was to investigate stage T1 tumors regarding <it>MDM2</it> promoter SNP309 polymorphism, mutations in the <it>p53</it> gene, and expression of p53 and p16 measured by immunohistochemistry, and subsequently relate these changes to tumor recurrence and progression. We examined a cohort of patients with primary stage T1 urothelial carcinoma of the bladder and their tumors.</p> <p>Methods</p> <p>After re-evaluation of the original slides and exclusions, the study population comprised 141 patients, all with primary stage T1 urothelial carcinoma of the bladder. The hospital records were screened for clinical parameters and information concerning presence of histologically proven recurrence and progression. The paraffin-embedded tumor material was evaluated by immunohistochemistry. Any mutations found in the <it>p53</it> gene were studied by single-strand conformation analysis and Sanger sequencing. The <it>MDM2</it> SNP309 polymorphism was investigated by pyrosequencing. Multivariate analyses concerning association with prognosis were performed, and Kaplan-Meier analysis was conducted for a combination of changes and time to progression.</p> <p>Results</p> <p>Of the 141 patients, 82 had at least one <it>MDM2</it> SNP309 G allele, and 53 had a mutation in the <it>p53</it> gene, but neither of those anomalies was associated with a worse prognosis. A mutation in the <it>p53</it> gene was associated with immunohistochemically visualized p53 protein expression at a cut-off value of 50%. In the group with <it>p53</it> mutation Kaplan-Meier analysis showed higher rate of progression and shorter time to progression in patients with immunohistochemically abnormal p16 expression compared to them with normal p16 expression (p = 0.038).</p> <p>Conclusions</p> <p><it>MDM2</it> SNP309 promoter polymorphism and mutations in <it>p53</it> were not associated with worse prognosis in this cohort of patients with primary stage T1 urinary bladder carcinoma. However, patients with abnormal p16 expression and a mutated <it>p53</it> gene had a higher rate of and a shorter time to progression, and <it>p53</it> gene mutation was associated with an abnormal immunohistochemistry for p53 at a cut-off of 50%.</p
    corecore