115 research outputs found

    KCNA5 gene is not confirmed as a systemic sclerosis-related pulmonary arterial hypertension genetic susceptibility factor

    Get PDF
    <p>Introduction: Potassium voltage-gated channel shaker-related subfamily member 5 (KCNA5) is implicated in vascular tone regulation, and its inhibition during hypoxia produces pulmonary vasoconstriction. Recently, a protective association of the KCNA5 locus with systemic sclerosis (SSc) patients with pulmonary arterial hypertension (PAH) was reported. Hence, the aim of this study was to replicate these findings in an independent multicenter Caucasian SSc cohort.</p> <p>Methods: The 2,343 SSc cases (179 PAH positive, confirmed by right-heart catheterization) and 2,690 matched healthy controls from five European countries were included in this study. Rs10744676 single-nucleotide polymorphism (SNP) was genotyped by using a TaqMan SNP genotyping assay.</p> <p>Results: Individual population analyses of the selected KCNA5 genetic variant did not show significant association with SSc or any of the defined subsets (for example, limited cutaneous SSc, diffuse cutaneous SSc, anti-centromere autoantibody positive and anti-topoisomerase autoantibody positive). Furthermore, pooled analyses revealed no significant evidence of association with the disease or any of the subsets, not even the PAH-positive group. The comparison of PAH-positive patients with PAH-negative patients showed no significant differences among patients.</p> <p>Conclusions: Our data do not support an important role of KCNA5 as an SSc-susceptibility factor or as a PAH-development genetic marker for SSc patients.</p&gt

    A replication study confirms the association of TNFSF4 (OX40L) polymorphisms with systemic sclerosis in a large European cohort

    Get PDF
    <p><b>Objectives</b> The aim of this study was to confirm the influence of TNFSF4 polymorphisms on systemic sclerosis (SSc) susceptibility and phenotypic features.</p> <p><b>Methods</b> A total of 8 European populations of Caucasian ancestry were included, comprising 3014 patients with SSc and 3125 healthy controls. Four genetic variants of TNFSF4 gene promoter (rs1234314, rs844644, rs844648 and rs12039904) were selected as genetic markers.</p> <p><b>Results</b> A pooled analysis revealed the association of rs1234314 and rs12039904 polymorphisms with SSc (OR 1.15, 95% CI 1.02 to 1.31; OR 1.18, 95% CI 1.08 to 1.29, respectively). Significant association of the four tested variants with patients with limited cutaneous SSc (lcSSc) was revealed (rs1234314 OR 1.22, 95% CI 1.07 to 1.38; rs844644 OR 0.91, 95% CI 0.83 to 0.99; rs844648 OR 1.10, 95% CI 1.01 to 1.20 and rs12039904 OR 1.20, 95% CI 1.09 to 1.33). Association of rs1234314, rs844648 and rs12039904 minor alleles with patients positive for anti-centromere antibodies (ACA) remained significant (OR 1.23, 95% CI 1.10 to 1.37; OR 1.12, 95% CI 1.01 to 1.25; OR 1.22, 95% CI 1.07 to 1.38, respectively). Haplotype analysis confirmed a protective haplotype associated with SSc, lcSSc and ACA positive subgroups (OR 0.88, 95% CI 0.82 to 0.96; OR 0.88, 95% CI 0.80 to 0.96; OR 0.86, 95% CI 0.77 to 0.97, respectively) and revealed a new risk haplotype associated with the same groups of patients (OR 1.14, 95% CI 1.03 to 1.26; OR 1.20, 95% CI 1.08 to 1.35; OR 1.23, 95% CI 1.07 to 1.42, respectively).</p> <p><b>Conclusions</b> The data confirm the influence of TNFSF4 polymorphisms in SSc genetic susceptibility, especially in subsets of patients positive for lcSSc and ACA.</p&gt

    Cross-disorder analysis of schizophrenia and 19 immune-mediated diseases identifies shared genetic risk.

    Get PDF
    Many immune diseases occur at different rates among people with schizophrenia compared to the general population. Here, we evaluated whether this phenomenon might be explained by shared genetic risk factors. We used data from large genome-wide association studies to compare the genetic architecture of schizophrenia to 19 immune diseases. First, we evaluated the association with schizophrenia of 581 variants previously reported to be associated with immune diseases at genome-wide significance. We identified five variants with potentially pleiotropic effects. While colocalization analyses were inconclusive, functional characterization of these variants provided the strongest evidence for a model in which genetic variation at rs1734907 modulates risk of schizophrenia and Crohn’s disease via altered methylation and expression of EPHB4—a gene whose protein product guides the migration of neuronal axons in the brain and the migration of lymphocytes towards infected cells in the immune system. Next, we investigated genome-wide sharing of common variants between schizophrenia and immune diseases using cross-trait LD score regression. Of the 11 immune diseases with available genome-wide summary statistics, we observed genetic correlation between six immune diseases and schizophrenia: inflammatory bowel disease (rg = 0.12 ± 0.03, P = 2.49 × 10−4), Crohn’s disease (rg = 0.097 ± 0.06, P = 3.27 × 10−3), ulcerative colitis (rg = 0.11 ± 0.04, P = 4.05 × 10–3), primary biliary cirrhosis (rg = 0.13 ± 0.05, P = 3.98 × 10−3), psoriasis (rg = 0.18 ± 0.07, P = 7.78 × 10–3) and systemic lupus erythematosus (rg = 0.13 ± 0.05, P = 3.76 × 10–3). With the exception of ulcerative colitis, the degree and direction of these genetic correlations were consistent with the expected phenotypic correlation based on epidemiological data. Our findings suggest shared genetic risk factors contribute to the epidemiological association of certain immune diseases and schizophrenia.This research was supported in part by a number of funding sources. This research uses resources provided by the Genetic Association Information Network (GAIN), obtained from the database of Genotypes and Phenotypes (dbGaP) found at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs000021.v3.p2; samples and associated phenotype data for this study were provided by the Molecular Genetics of Schizophrenia Collaboration (PI: Pablo V. Gejman, Evanston Northwestern Healthcare and Northwestern University, Evanston, IL, USA). Fulbright Canada, the Weston Foundation, and Brain Canada through the Canada Brain Research Fund—a public-private partnership established by the Government of Canada (to J.G.P.); the National Research Foundation of Korea (NRF) [grant 2016R1C1B2013126 to B.H.] and the Bio & Medical Technology Development Program of the NRF [grant 2017M3A9B6061852 to B.H.] funded by the Korean government, Ministry of Science and ICT; the Finnish Cultural Foundation and Academy of Finland [grant 309643 to H.M.O.]; the Spanish Ministry of Economy and Competitiveness and P12-BIO-1395 from Consejería de Innovación, Ciencia y Tecnología, Junta de Andalucía (Spain) [grant SAF2015-66761-P to J.M.]; the US National Institutes of Health (NIH) [grants R01AR045584, R01AR056292, X01HG007484 and P30AR057212 to Y.J., S.A.S. and R.S.]; the US NIH [grants N01AR02251 and R01AR05528 to M.D.M.]; the US NIH [grants 1R01AR063759, 1R01AR062886, 1UH2AR067677-01 and U19AI111224-01 to S.R.] and Doris Duke Charitable Foundation [grant 2013097 to S.R.]. Funding for the GAIN schizophrenia sample was provided by the US NIH [grants R01 MH67257, R01 MH59588, R01 MH59571, R01 MH59565, R01 MH59587, R01 MH60870, R01 MH59566, R01 MH59586, R01 MH61675, R01 MH60879, R01 MH81800, U01 MH46276, U01 MH46289, U01 MH46318, U01 MH79469 and U01 MH79470] and the genotyping of samples was provided through GAIN. The funding sources did not influence the study design, data analysis or writing of this manuscript

    A genome-wide association study follow-up suggests a possible role for PPARG in systemic sclerosis susceptibility

    Get PDF
    Introduction: A recent genome-wide association study (GWAS) comprising a French cohort of systemic sclerosis (SSc) reported several non-HLA single-nucleotide polymorphisms (SNPs) showing a nominal association in the discovery phase. We aimed to identify previously overlooked susceptibility variants by using a follow-up strategy.<p></p> Methods: Sixty-six non-HLA SNPs showing a P value <10-4 in the discovery phase of the French SSc GWAS were analyzed in the first step of this study, performing a meta-analysis that combined data from the two published SSc GWASs. A total of 2,921 SSc patients and 6,963 healthy controls were included in this first phase. Two SNPs, PPARG rs310746 and CHRNA9 rs6832151, were selected for genotyping in the replication cohort (1,068 SSc patients and 6,762 healthy controls) based on the results of the first step. Genotyping was performed by using TaqMan SNP genotyping assays. Results: We observed nominal associations for both PPARG rs310746 (PMH = 1.90 × 10-6, OR, 1.28) and CHRNA9 rs6832151 (PMH = 4.30 × 10-6, OR, 1.17) genetic variants with SSc in the first step of our study. In the replication phase, we observed a trend of association for PPARG rs310746 (P value = 0.066; OR, 1.17). The combined overall Mantel-Haenszel meta-analysis of all the cohorts included in the present study revealed that PPARG rs310746 remained associated with SSc with a nominal non-genome-wide significant P value (PMH = 5.00 × 10-7; OR, 1.25). No evidence of association was observed for CHRNA9 rs6832151 either in the replication phase or in the overall pooled analysis.<p></p> Conclusion: Our results suggest a role of PPARG gene in the development of SSc

    GWAS for systemic sclerosis identifies multiple risk loci and highlights fibrotic and vasculopathy pathways.

    Get PDF
    Systemic sclerosis (SSc) is an autoimmune disease that shows one of the highest mortality rates among rheumatic diseases. We perform a large genome-wide association study (GWAS), and meta-analysis with previous GWASs, in 26,679 individuals and identify 27 independent genome-wide associated signals, including 13 new risk loci. The novel associations nearly double the number of genome-wide hits reported for SSc thus far. We define 95% credible sets of less than 5 likely causal variants in 12 loci. Additionally, we identify specific SSc subtype-associated signals. Functional analysis of high-priority variants shows the potential function of SSc signals, with the identification of 43 robust target genes through HiChIP. Our results point towards molecular pathways potentially involved in vasculopathy and fibrosis, two main hallmarks in SSc, and highlight the spectrum of critical cell types for the disease. This work supports a better understanding of the genetic basis of SSc and provides directions for future functional experiments

    A genome-wide association study of rheumatoid arthritis without antibodies against citrullinated peptides

    Get PDF
    Introduction. Rheumatoid arthritis (RA) patients can be classified based on presence or absence of anticitrullinated peptide antibodies (ACPA) in their serum. This heterogeneity among patients may reflect important biological differences underlying the disease process. To date, the majority of genetic studies have focused on the ACPA-positive group. Therefore, our goal was to analyse the genetic risk factors that contribute to ACPA-negative RA. Methods. We performed a large-scale genome-wide association study (GWAS) in three Caucasian European cohorts comprising 1148 ACPA-negative RA patients and 6008 controls. All patients were screened using the Illumina Human Cyto-12 chip, and controls were genotyped using different genome-wide platforms. Population-independent analyses were carried out by means of logistic regression. Meta-analysis with previously published data was performed as follow-up for selected signals (reaching a total of 1922 ACPA-negative RA patients and 7087 controls). Imputation of classical HLA alleles, aminoacid residues and single nucleotide polymorphisms was undertaken. Results. The combined analysis of the studied cohorts resulted in identification of a peak of association in the HLA-region and several suggestive non-HLA associations. Meta-analysis with previous reports confirmed the association of the HLA region with this subset and an observed association in the CLYBL locus remained suggestive. The imputation and deep interrogation of the HLA region led to identification of a two aminoacid model (HLA-B at position 9 and HLA-DRB1 at position 11) that accounted for the observed genome-wide associations in this region. Conclusions. Our study shed light on the influence of the HLA region in ACPA-negative RA and identified a suggestive risk locus for this condition

    GWAS for Systemic Sclerosis Identifies Multiple Risk Loci and Highlights Fibrotic and Vasculopathy Pathways

    Get PDF
    Systemic sclerosis (SSc) is an autoimmune disease that shows one of the highest mortality rates among rheumatic diseases. We perform a large genome-wide association study (GWAS), and meta-analysis with previous GWASs, in 26,679 individuals and identify 27 independent genome-wide associated signals, including 13 new risk loci. The novel associations nearly double the number of genome-wide hits reported for SSc thus far. We define 95% credible sets of less than 5 likely causal variants in 12 loci. Additionally, we identify specific SSc subtype-associated signals. Functional analysis of high-priority variants shows the potential function of SSc signals, with the identification of 43 robust target genes through HiChIP. Our results point towards molecular pathways potentially involved in vasculopathy and fibrosis, two main hallmarks in SSc, and highlight the spectrum of critical cell types for the disease. This work supports a better understanding of the genetic basis of SSc and provides directions for future functional experiments.Funding: This work was supported by Spanish Ministry of Economy and Competitiveness (grant ref. SAF2015-66761-P), Consejeria de Innovacion, Ciencia y Tecnologia, Junta de Andalucía (P12-BIO-1395), Ministerio de Educación, Cultura y Deporte through the program FPU, Juan de la Cierva fellowship (FJCI-2015-24028), Red de Investigación en Inflamación y Enfermadades Reumaticas (RIER) from Instituto de Salud Carlos III (RD16/0012/0013), and Scleroderma Research Foundation and NIH P50-HG007735 (to H.Y.C.). H.Y.C. is an Investigator of the Howard Hughes Medical Institute. PopGen 2.0 is supported by a grant from the German Ministry for Education and Research (01EY1103). M.D.M and S.A. are supported by grant DoD W81XWH-18-1-0423 and DoD W81XWH-16-1-0296, respectively

    GWAS for systemic sclerosis identifies multiple risk loci and highlights fibrotic and vasculopathy pathways

    Full text link
    Systemic sclerosis (SSc) is an autoimmune disease that shows one of the highest mortality rates among rheumatic diseases. We perform a large genome-wide association study (GWAS), and meta-analysis with previous GWASs, in 26,679 individuals and identify 27 independent genome-wide associated signals, including 13 new risk loci. The novel associations nearly double the number of genome-wide hits reported for SSc thus far. We define 95% credible sets of less than 5 likely causal variants in 12 loci. Additionally, we identify specific SSc subtype-associated signals. Functional analysis of high-priority variants shows the potential function of SSc signals, with the identification of 43 robust target genes through HiChIP. Our results point towards molecular pathways potentially involved in vasculopathy and fibrosis, two main hallmarks in SSc, and highlight the spectrum of critical cell types for the disease. This work supports a better understanding of the genetic basis of SSc and provides directions for future functional experiments

    A multicenter study confirms CD226gene association with systemic sclerosis-related pulmonary fibrosis

    Get PDF
    Introduction: CD226 genetic variants have been associated with a number of autoimmune diseases and recently with systemic sclerosis (SSc). The aim of this study was to test the influence of CD226 loci in SSc susceptibility, clinical phenotypes and autoantibody status in a large multicenter European population. Methods: A total of seven European populations of Caucasian ancestry were included, comprising 2,131 patients with SSc and 3,966 healthy controls. Three CD226 single nucleotide polymorphisms (SNPs), rs763361, rs3479968 and rs727088, were genotyped using Taqman 5'allelic discrimination assays. Results: Pooled analyses showed no evidence of association of the three SNPs, neither with the global disease nor with the analyzed subphenotypes. However, haplotype block analysis revealed a significant association for the TCG haplotype (SNP order: rs763361, rs34794968, rs727088) with lung fibrosis positive patients (PBonf = 3.18E-02 OR 1.27 (1.05 to 1.54)). Conclusion: Our data suggest that the tested genetic variants do not individually influence SSc susceptibility but a CD226 three-variant haplotype is related with genetic predisposition to SSc-related pulmonary fibrosis
    corecore