10 research outputs found

    Two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/388

    Efficacy and safety of supplemental melatonin for delayed sleep–wake phase disorder in children: an overview

    No full text
    Delayed sleep–wake phase disorder (DSPD) is the most frequently occurring intrinsic circadian rhythm sleep–wake disorder, with the highest prevalence in adolescence. Melatonin is the first-choice drug treatment. However, to date melatonin (in a controlled-release formulation) is only authorised for the treatment of insomnia in children with autism or Smiths-Magenis syndrome. Concerns have been raised with respect to the safety and efficacy of melatonin for more general use in children, as melatonin has not undergone the formal safety testing required for a new drug, especially long-term safety in children. Melatonin is known to have profound effects on the reproductive systems of rodents, sheep and primates, as well as effects on the cardiovascular, immune and metabolic systems. The objective of the present article was therefore to establish the efficacy and safety of exogenous melatonin for use in children with DSPD, based on in vitro, animal model and clinical studies by reviewing the relevant literature in the Medline database using PubMed. Acute toxicity studies in rats and mice showed toxic effects only at extremely high melatonin doses (>400 mg/kg), some tens of thousands of times more than the recommended dose of 3–6 mg in a person weighing 70 kg. Longer-term administration of melatonin improved the general health and survival of ageing rats or mice. A full range of in vitro/in vivo genotoxicity tests consistently found no evidence that melatonin is genotoxic. Similarly long term administration of melatonin in rats or mice did not have carcinogenic effects, or negative effects on cardiovascular, endocrine and reproductive systems. With regard to clinical studies, in 19 randomised controlled trials comprising 841 children and adolescents with DSPD, melatonin treatment (usually of 4 weeks duration) consistently improved sleep latency by 22–60 min, without any serious adverse effects. Similarly, 17 randomised controlled trials, comprising 1374 children and adolescents, supplementing melatonin for indications other than DSPD, reported no relevant adverse effects. In addition, 4 long-term safety studies (1.0–10.8 yr) supplementing exogenous melatonin found no substantial deviation of the development of children with respect to sleep quality, puberty development and mental health scores. Finally, post-marketing data for an immediate-release melatonin formulation (Bio-melatonin), used in the UK since 2008 as an unlicensed medicine for sleep disturbance in children, recorded no adverse events to date on sales of approximately 600,000 packs, equivalent to some 35 million individual 3 mg tablet doses (MHRA yellow card adverse event recording scheme). In conclusion, evidence has been provided that melatonin is an efficacious and safe chronobiotic drug for the treatment of DSPD in children, provided that it is administered at the correct time (3–5 h before endogenous melatonin starts to rise in dim light (DLMO)), and in the correct (minimal effective) dose. As the status of circadian rhythmicity may change during long-time treatment, it is recommended to stop melatonin treatment at least once a year (preferably during the summer holidays)

    Multiplicity dependence of the average transverse momentum in pp, p-Pb, and Pb-Pb collisions at the LHC

    Get PDF
    The average transverse momentum (p(T)) versus the charged-particle multiplicity N-ch was measured in p-Pb collisions at a collision energy per nucleon-nucleon root S-NN = 5.02 TeV and in pp collisions at collision energies of root s = 0.9, 2.76, and 7 TeV in the kinematic range 0.15 < p(T) < 10.0 GeV/c and vertical bar eta vertical bar < 0.3 with the ALICE apparatus at the LHC. These data are compared to results in Pb-Pb collisions at root S-NN = 2.76 TeV at similar charged-particle multiplicities. In pp and p-Pb collisions, a strong increase of (p(T)) with N-ch is observed, which is much stronger than that measured in Pb-Pb collisions. For pp collisions, this could be attributed, within a model of hadronizing strings, to multiple-parton interactions and to a final-state color reconnection mechanism. The data in p-Pb and Pb-Pb collisions cannot be described by an incoherent superposition of nucleon-nucleon collisions and pose a challenge to most of the event generators. (C) 2013 CERN. Published by Elsevier B.V. All rights reserved

    Production of charged pions, kaons and protons at large transverse momenta in pp and Pb–Pb collisions at sNN=2.76\sqrt{s_{NN}}=2.76 TeV

    Get PDF
    Transverse momentum spectra of pi(+/-), K-+/- and p((p) over bar) up to p(T) = 20 GeV/c at mid-rapidity in pp, peripheral (60-80%) and central (0-5%) Pb-Pb collisions at v root s(NN) = 2.76 TeV have been measured using the ALICE detector at the Large Hadron Collider. The proton-to-pion and the kaon-to-pionratios both show a distinct peak at p(T) approximate to 3 GeV/c in central Pb-Pb collisions. Below the peak, p(T) 10 GeV/c particle ratios in pp and Pb-Pb collisions are in agreement and the nuclear modification factors for pi(+/-), K-+/- and p((p) over bar) indicate that, within the systematic and statistical uncertainties, the suppression is the same. This suggests that the chemical composition of leading particles from jets in the medium is similar to that of vacuum jets

    Centrality, rapidity and transverse momentum dependence of J/\u3c8 suppression in Pb-Pb collisions at 1asNN= 2.76TeV

    Get PDF
    The inclusive J/.nuclear modification factor (R-AA) in Pb-Pb collisions at root(NN)-N-S = 2.76TeVhas been measured by ALICE as a function of centrality in the e+ e-decay channel at mid-rapidity (| y| < 0.8) and as a function of centrality, transverse momentum and rapidity in the + -decay channel at forward-rapidity (2.5 < y < 4). The J/.yields measured in Pb-Pb are suppressed compared to those in ppcollisions scaled by the number of binary collisions. The RAAintegrated over a centrality range corresponding to 90% of the inelastic Pb-Pb cross section is 0.72 - 0.06(stat.) - 0.10(syst.) at mid-rapidity and 0.58 - 0.01(stat.) - 0.09(syst.) at forward-rapidity. At low transverse momentum, significantly larger values of RAAare measured at forward-rapidity compared to measurements at lower energy. These features suggest that a contribution to the J/.yield originates from charm quark (re) combination in the deconfined partonic medium

    Centrality dependence of the pseudorapidity density distribution for charged particles in Pb\u2013Pb collisions at 1asNN = 2.76 TeV

    Get PDF
    We present the first wide-range measurement of the charged-particle pseudorapidity density distribution, for different centralities (the 0\u20135%, 5\u201310%, 10\u201320%, and 20\u201330% most central events) in Pb\u2013Pb collisions at 1asNN = 2.76 TeV at the LHC. The measurement is performed using the full coverage of the ALICE detectors, 125.0 < \u3b7 < 5.5, and employing a special analysis technique based on collisions arising from LHC \u2018satellite\u2019 bunches. We present the pseudorapidity density as a function of the number of participating nucleons as well as an extrapolation to the total number of produced charged particles (Nch = 17 165 \ub1 772 for the 0\u20135% most central collisions). From the measured dNch/d\u3b7 distribution we derive the rapidity density distribution, dNch/dy, under simple assumptions. The rapidity density distribution is found to be significantly wider than the predictions of the Landau model. We assess the validity of longitudinal scaling by comparing to lower energy results from RHIC. Finally the mechanisms of the underlying particle production are discussed based on a comparison with various theoretical models
    corecore