50 research outputs found

    Patterns of deep-sea genetic connectivity in the New Zealand region : implications for management of benthic ecosystems

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 7 (2012): e49474, doi:10.1371/journal.pone.0049474.Patterns of genetic connectivity are increasingly considered in the design of marine protected areas (MPAs) in both shallow and deep water. In the New Zealand Exclusive Economic Zone (EEZ), deep-sea communities at upper bathyal depths (<2000 m) are vulnerable to anthropogenic disturbance from fishing and potential mining operations. Currently, patterns of genetic connectivity among deep-sea populations throughout New Zealand’s EEZ are not well understood. Using the mitochondrial Cytochrome Oxidase I and 16S rRNA genes as genetic markers, this study aimed to elucidate patterns of genetic connectivity among populations of two common benthic invertebrates with contrasting life history strategies. Populations of the squat lobster Munida gracilis and the polychaete Hyalinoecia longibranchiata were sampled from continental slope, seamount, and offshore rise habitats on the Chatham Rise, Hikurangi Margin, and Challenger Plateau. For the polychaete, significant population structure was detected among distinct populations on the Chatham Rise, the Hikurangi Margin, and the Challenger Plateau. Significant genetic differences existed between slope and seamount populations on the Hikurangi Margin, as did evidence of population differentiation between the northeast and southwest parts of the Chatham Rise. In contrast, no significant population structure was detected across the study area for the squat lobster. Patterns of genetic connectivity in Hyalinoecia longibranchiata are likely influenced by a number of factors including current regimes that operate on varying spatial and temporal scales to produce potential barriers to dispersal. The striking difference in population structure between species can be attributed to differences in life history strategies. The results of this study are discussed in the context of existing conservation areas that are intended to manage anthropogenic threats to deep-sea benthic communities in the New Zealand region.This work was funded in part by a Fulbright Fellowship administered by Fulbright New Zealand and the U.S. Department of State, awarded in 2011 to EKB. Funding and support for research expedition was provided by Land Information New Zealand, New Zealand Ministry of Fisheries, NIWA, Census of Marine Life on Seamounts (CenSeam), and the Foundation for Research, Science and Technology. Other research funding was provided by the New Zealand Ministry of Science and Innovation project “Impacts of resource use on vulnerable deep-sea communities” (FRST contract CO1X0906), the National Science Foundation (OCE-0647612), and the Deep Ocean Exploration Institute (Fellowship support to TMS)

    Environmental Geochemistry of Radioactive Contamination

    Full text link

    Environmental geochemistry of radioactive contamination.

    Get PDF
    This report attempts to describe the geochemical foundations of the behavior of radionuclides in the environment. The information is obtained and applied in three interacting spheres of inquiry and analysis: (1) experimental studies and theoretical calculations, (2) field studies of contaminated and natural analog sites and (3) model predictions of radionuclide behavior in remediation and waste disposal. Analyses of the risks from radioactive contamination require estimation of the rates of release and dispersion of the radionuclides through potential exposure pathways. These processes are controlled by solubility, speciation, sorption, and colloidal transport, which are strong functions of the compositions of the groundwater and geomedia as well as the atomic structure of the radionuclides. The chemistry of the fission products is relatively simple compared to the actinides. Because of their relatively short half-lives, fission products account for a large fraction of the radioactivity in nuclear waste for the first several hundred years but do not represent a long-term hazard in the environment. The chemistry of the longer-lived actinides is complex; however, some trends in their behavior can be described. Actinide elements of a given oxidation state have either similar or systematically varying chemical properties due to similarities in ionic size, coordination number, valence, and electron structure. In dilute aqueous systems at neutral to basic pH, the dominant actinide species are hydroxy- and carbonato-complexes, and the solubility-limiting solid phases are commonly oxides, hydroxides or carbonates. In general, actinide sorption will decrease in the presence of ligands that complex with the radionuclide; sorption of the (IV) species of actinides (Np, Pu, U) is generally greater than of the (V) species. The geochemistry of key radionuclides in three different environments is described in this report. These include: (1) low ionic strength reducing waters from crystalline rocks at nuclear waste research sites in Sweden; (2) oxic water from the J-13 well at Yucca Mountain, Nevada, the site of a proposed repository for high level nuclear waste (HLW) in tuffaceous rocks; and (3) reference brines associated with the Waste Isolation Pilot Plant (WIPP). The transport behaviors of radionuclides associated with the Chernobyl reactor accident and the Oklo Natural Reactor are described. These examples span wide temporal and spatial scales and include the rapid geochemical and physical processes important to nuclear reactor accidents or industrial discharges as well as the slower processes important to the geologic disposal of nuclear waste. Application of geochemical information to remediating or assessing the risk posed by radioactive contamination is the final subject of this report. After radioactive source terms have been removed, large volumes of soil and water with low but potentially hazardous levels of contamination may remain. For poorly-sorbing radionuclides, capture of contaminated water and removal of radionuclides may be possible using permeable reactive barriers and bioremediation. For strongly sorbing radionuclides, contaminant plumes will move very slowly. Through a combination of monitoring, regulations and modeling, it may be possible to have confidence that they will not be a hazard to current or future populations. Abstraction of the hydrogeochemical properties of real systems into simple models is required for probabilistic risk assessment. Simplifications in solubility and sorption models used in performance assessment calculations for the WIPP and the proposed HLW repository at Yucca Mountain are briefly described

    Dynamic recruitment of Cdc2 to specific microtubule structures during mitosis

    No full text
    A-type cyclin-dependent kinases (CDKs), also known as cdc2, are central to the orderly progression of the cell cycle. We made a functional Green Fluorescent Protein (GFP) fusion with CDK-A (Cdc2-GFP) and followed its subcellular localization during the cell cycle in tobacco cells. During interphase, the Cdc2-GFP fusion protein was found in both the cytoplasm and the nucleus, where it was highly resistant to extraction. In premitotic cells, a bright and narrow equatorial band appeared on the cell surface, resembling the late preprophase band, which disintegrated within 10 min as followed by time-lapse images. Cdc2-GFP was not found on prophase spindles but left the chromatin soon after this stage and associated progressively with the metaphase spindle in a microtubule-dependent manner. Arresting cells in mitosis through the stabilization of microtubules by taxol further enhanced the spindle-localized pool of Cdc2-GFP. Toward the end of mitosis, Cdc2-GFP was found at the midzone of the anaphase spindle and phragmoplast; eventually, it became focused at the midline of these microtubule structures. In detergent-extracted cells, the Cdc2-GFP remained associated with mitotic structures. Retention on spindles was prevented by pretreatment with the CDK-specific inhibitor roscovitine and was enhanced by the protein phosphatase inhibitor okadaic acid. Furthermore, we demonstrate that both the endogenous CDK-A and Cdc2-GFP were cosedimented with taxol-stabilized plant microtubules from cell extracts and that Cdc2 activity was detected together with a fraction of polymerized tubulin. These data provide evidence that the A-type CDKs associate physically with mitotic structures in a microtubule-dependent manner and may be involved in regulating the behavior of specific microtubule arrays throughout mitosis

    Dynamic Recruitment of Cdc2 to Specific Microtubule Structures during Mitosis

    Get PDF
    A-type cyclin-dependent kinases (CDKs), also known as cdc2, are central to the orderly progression of the cell cycle. We made a functional Green Fluorescent Protein (GFP) fusion with CDK-A (Cdc2-GFP) and followed its subcellular localization during the cell cycle in tobacco cells. During interphase, the Cdc2-GFP fusion protein was found in both the cytoplasm and the nucleus, where it was highly resistant to extraction. In premitotic cells, a bright and narrow equatorial band appeared on the cell surface, resembling the late preprophase band, which disintegrated within 10 min as followed by time-lapse images. Cdc2-GFP was not found on prophase spindles but left the chromatin soon after this stage and associated progressively with the metaphase spindle in a microtubule-dependent manner. Arresting cells in mitosis through the stabilization of microtubules by taxol further enhanced the spindle-localized pool of Cdc2-GFP. Toward the end of mitosis, Cdc2-GFP was found at the midzone of the anaphase spindle and phragmoplast; eventually, it became focused at the midline of these microtubule structures. In detergent-extracted cells, the Cdc2-GFP remained associated with mitotic structures. Retention on spindles was prevented by pretreatment with the CDK-specific inhibitor roscovitine and was enhanced by the protein phosphatase inhibitor okadaic acid. Furthermore, we demonstrate that both the endogenous CDK-A and Cdc2-GFP were cosedimented with taxol-stabilized plant microtubules from cell extracts and that Cdc2 activity was detected together with a fraction of polymerized tubulin. These data provide evidence that the A-type CDKs associate physically with mitotic structures in a microtubule-dependent manner and may be involved in regulating the behavior of specific microtubule arrays throughout mitosis
    corecore