1,480 research outputs found

    Trio Southwest

    Full text link
    Program listing performers and works performed

    Hairy Canola (Brasssica napus) re-visited: Down-regulating TTG1 in an AtGL3-enhanced hairy leaf background improves growth, leaf trichome coverage, and metabolite gene expression diversity

    Get PDF
    Primer sequences used in the construction and analysis of B. napus transgenic lines. Table S1B. Blast of batch leaf Q-PCR primers to the B. rapa, B. oleracea, and B. napus genomes for five trichome regulatory genes and two control genes in B. napus. Table S1C. “Detectable” B. napus homologues of five trichome regulatory genes in first true leaves (from RNA sequencing). Table S1D. BlastP for five Arabidopsis trichome regulatory genes against the Brassica napus genome in NCBI. Table S2A. Differentially expressed leaf trichome ESTs (p < 0.05) in hairy AtGL3+ B. napus or ultra-hairy line K-5-8 relative to semi-glabrous cv. Westar. Table S2B. Leaf trichome genes with no significant expression differences (p < 0.05) in hairy AtGL3+ B. napus or ultra-hairy line K-5-8 relative to semi-glabrous cv. Westar. Table S3. Differentially expressed leaf flavonoid ESTs (p < 0.05) in hairy AtGL3+ B. napus or ultra-hairy K-5-8 relative to semi-glabrous cv. Westar. Table S4. Differentially expressed leaf phenylpropanoid and lignin ESTs (p < 0.05) in hairy AtGL3+ B. napus or ultra-hairy K-5-8 relative to semi-glabrous cv. Westar. Table S5. Differentially expressed leaf phenolic ESTs (p < 0.05) in hairy AtGL3+ B. napus or ultra-hairy K-5-8 relative to semi-glabrous cv. Westar. Table S6. Differentially expressed leaf shikimate ESTs (p < 0.05) in hairy AtGL3+ B. napus or ultra-hairy K-5-8 relative to semi-glabrous cv. Westar. Table S7. Differentially expressed leaf isoprenoid and terpene ESTs (p < 0.05) in hairy AtGL3+ B. napus or ultra-hairy K-5-8 relative to semi-glabrous cv. Westar. Table S8. Differentially expressed leaf glucosinolate-related and miscellaneous sulphur-related ESTs (p < 0.05) in hairy AtGL3+ B. napus or ultra-hairy K-5-8 relative to semi-glabrous cv. Westar. Table S9. Differentially expressed leaf alkaloid-related and miscellaneous N-metabolizing ESTs (p < 0.05) in hairy AtGL3+ B. napus or ultra-hairy K-5-8 relative to semi-glabrous cv. Westar. Table S10. Differentially expressed leaf cell wall structural carbohydrate ESTs ((p < 0.05) in hairy AtGL3+ B. napus or ultra-hairy K-5-8 relative to semi-glabrous cv. Westar. Table S11. Differentially expressed leaf mucilage ESTs (p < 0.05) in hairy AtGL3+ B. napus or ultra-hairy K-5-8 relative to semi-glabrous cv. Westar. Table S12. Differentially expressed leaf wax ESTs (p < 0.05) in hairy AtGL3+ B. napus or ultra-hairy K-5-8 relative to semi-glabrous cv. Westar. Table S13. Differentially expressed leaf hormone ESTs (p < 0.05) in hairy AtGL3+ B. napus or ultra-hairy K-5-8 relative to semi-glabrous cv. Westar. Table S14. Differentially expressed leaf secondary metabolism ESTs (p < 0.05) in hairy AtGL3+ B. napus or ultra-hairy K-5-8 relative to semi-glabrous cv. Westar. Table S15. Differentially expressed leaf redox-related ESTs (p < 0.05)) in hairy AtGL3+ B. napus or ultra-hairy K-5-8 relative to semi-glabrous cv. Westar. Table S16. Differentially expressed leaf protein modification ESTs (p < 0.05) in hairy AtGL3+ B. napus or ultra-hairy K-5-8 relative to semi-glabrous cv. Westar. Table S17. Differentially expressed leaf protein degradation ESTs (p < 0.05) in hairy AtGL3+ B. napus or ultra-hairy K-5-8 relative to semi-glabrous cv. Westar. Table S18. Differentially expressed leaf transcription factor ESTs (p < 0.05) in hairy AtGL3+ B. napus or ultra-hairy K-5-8 relative to semi-glabrous cv. Westar. (XLSX 400 kb

    Hairy Canola (Brasssica napus) re-visited: Down-regulating TTG1 in an AtGL3-enhanced hairy leaf background improves growth, leaf trichome coverage, and metabolite gene expression diversity

    Get PDF
    Background Through evolution, some plants have developed natural resistance to insects by having hairs (trichomes) on leaves and other tissues. The hairy trait has been neglected in Brassica breeding programs, which mainly focus on disease resistance, yield, and overall crop productivity. In Arabidopsis, a network of three classes of proteins consisting of TTG1 (a WD40 repeat protein), GL3 (a bHLH factor) and GL1 (a MYB transcription factor), activates trichome initiation and patterning. Introduction of a trichome regulatory gene AtGL3 from Arabidopsis into semi-glabrous Brassica napus resulted in hairy canola plants which showed tolerance to flea beetles and diamondback moths; however plant growth was negatively affected. In addition, the role of BnTTG1 transcription in the new germplasm was not understood. Results Here, we show that two ultra-hairy lines (K-5-8 and K-6-3) with BnTTG1 knock-down in the hairy AtGL3+ B. napus background showed stable enhancement of trichome coverage, density, and length and restored wild type growth similar to growth of the semi-glabrous Westar plant. In contrast, over-expression of BnTTG1 in the hairy AtGL3+ B. napus background gave consistently glabrous plants of very low fertility and poor stability, with only one glabrous plant (O-3-7) surviving to the T3 generation. Q-PCR trichome gene expression data in leaf samples combining several leaf stages for these lines suggested that BnGL2 controlled B. napus trichome length and out-growth and that strong BnTTG1 transcription together with strong GL3 expression inhibited this process. Weak expression of BnTRY in both glabrous and trichome-bearing leaves of B. napus in the latter Q-PCR experiment suggested that TRY may have functions other than as an inhibitor of trichome initiation in the Brassicas. A role for BnTTG1 in the lateral inhibition of trichome formation in neighbouring cells was also proposed for B. napus. RNA sequencing of first leaves identified a much larger array of genes with altered expression patterns in the K-5-8 line compared to the hairy AtGL3+ B. napus background (relative to the Westar control plant). These genes particularly included transcription factors, protein degradation and modification genes, but also included pathways that coded for anthocyanins, flavonols, terpenes, glucosinolates, alkaloids, shikimates, cell wall biosynthesis, and hormones. A 2nd Q-PCR experiment was conducted on redox, cell wall carbohydrate, lignin, and trichome genes using young first leaves, including T4 O-3-7-5 plants that had partially reverted to yield two linked growth and trichome phenotypes. Most of the trichome genes tested showed to be consistant with leaf trichome phenotypes and with RNA sequencing data in three of the lines. Two redox genes showed highest overall expression in K-5-8 leaves and lowest in O-3-7-5 leaves, while one redox gene and three cell wall genes were consistently higher in the two less robust lines compared with the two robust lines. Conclusion The data support the strong impact of BnTTG1 knockdown (in the presence of strong AtGL3 expression) at restoring growth, enhancing trichome coverage and length, and enhancing expression and diversity of growth, metabolic, and anti-oxidant genes important for stress tolerance and plant health in B. napus. Our data also suggests that the combination of strong (up-regulated) BnTTG1 expression in concert with strong AtGL3 expression is unstable and lethal to the plant

    Muscle p70S6K phosphorylation in response to soy and dairy rich meals in middle aged men with metabolic syndrome: a randomised crossover trial

    Get PDF
    The mammalian target of rapamycin (mTOR) pathway is the primary regulator of muscle protein synthesis. Metabolic syndrome (MetS) is characterized by central obesity and insulin resistance; little is known about how MetS affects the sensitivity of the mTOR pathway to feeding

    Is race medically relevant? A qualitative study of physicians' attitudes about the role of race in treatment decision-making

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of patient race in medical decision-making is heavily debated. While some evidence suggests that patient race can be used by physicians to predict disease risk and determine drug therapy, other studies document bias and stereotyping by physicians based on patient race. It is critical, then, to explore physicians' attitudes regarding the medical relevance of patient race.</p> <p>Methods</p> <p>We conducted a qualitative study in the United States using ten focus groups of physicians stratified by self-identified race (black or white) and led by race-concordant moderators. Physicians were presented with a medical vignette about a patient (whose race was unknown) with Type 2 diabetes and untreated hypertension, who was also a current smoker. Participants were first asked to discuss what medical information they would need to treat the patient. Then physicians were asked to explicitly discuss the importance of race to the hypothetical patient's treatment. To identify common themes, codes, key words and physician demographics were compiled into a comprehensive table that allowed for examination of similarities and differences by physician race. Common themes were identified using the software package NVivo (QSR International, v7).</p> <p>Results</p> <p>Forty self-identified black and 50 self-identified white physicians participated in the study. All physicians - regardless of their own race - believed that medical history, family history, and weight were important for making treatment decisions for the patient. However, black and white physicians reported differences in their views about the relevance of race. Several black physicians indicated that patient race is a central factor for choosing treatment options such as aggressive therapies, patient medication and understanding disease risk. Moreover, many black physicians considered patient race important to understand the patient's views, such as alternative medicine preferences and cultural beliefs about illness. However, few white physicians explicitly indicated that the patient's race was important over-and-above medical history. Instead, white physicians reported that the patient should be treated aggressively regardless of race.</p> <p>Conclusions</p> <p>This investigation adds to our understanding about how physicians in the United States consider race when treating patients, and sheds light on issues physicians face when deciding the importance of race in medical decision-making.</p

    Deep-sea microbes as tools to refine the rules of innate immune pattern recognition.

    Full text link
    The assumption of near-universal bacterial detection by pattern recognition receptors is a foundation of immunology. The limits of this pattern recognition concept, however, remain undefined. As a test of this hypothesis, we determined whether mammalian cells can recognize bacteria that they have never had the natural opportunity to encounter. These bacteria were cultivated from the deep Pacific Ocean, where the genus Moritella was identified as a common constituent of the culturable microbiota. Most deep-sea bacteria contained cell wall lipopolysaccharide (LPS) structures that were expected to be immunostimulatory, and some deep-sea bacteria activated inflammatory responses from mammalian LPS receptors. However, LPS receptors were unable to detect 80% of deep-sea bacteria examined, with LPS acyl chain length being identified as a potential determinant of immunosilence. The inability of immune receptors to detect most bacteria from a different ecosystem suggests that pattern recognition strategies may be defined locally, not globally.R01 AI093589 - NIAID NIH HHS; P30 DK034854 - NIDDK NIH HHS; U19 AI133524 - NIAID NIH HHS; R01 AI147314 - NIAID NIH HHS; R01 AI116550 - NIAID NIH HHS; R37 AI116550 - NIAID NIH HHS; R01 AI123820 - NIAID NIH HHSAccepted manuscrip

    Tracking transcription factor complexes on DNA using total internal reflectance fluorescence protein binding microarrays

    Get PDF
    We have developed a high-throughput protein binding microarray (PBM) assay to systematically investigate transcription regulatory protein complexes binding to DNA with varied specificity and affinity. Our approach is based on the novel coupling of total internal reflectance fluorescence (TIRF) spectroscopy, swellable hydrogel double-stranded DNA microarrays and dye-labeled regulatory proteins, making it possible to determine both equilibrium binding specificities and kinetic rates for multiple protein:DNA interactions in a single experiment. DNA specificities and affinities for the general transcription factors TBP, TFIIA and IIB determined by TIRF–PBM are similar to those determined by traditional methods, while simultaneous measurement of the factors in binary and ternary protein complexes reveals preferred binding combinations. TIRF–PBM provides a novel and extendible platform for multi-protein transcription factor investigation

    An evaluation of staining techniques for marking daily growth in scleractinian corals

    Get PDF
    Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Experimental Marine Biology and Ecology 440 (2013): 126-131, doi:10.1016/j.jembe.2012.12.003.In situ skeletal markers have been widely used to quantify skeletal growth rates of scleractinian corals on sub-annual time-scales. Nevertheless, an evaluation of different techniques, both in terms of their efficacy and potential impacts on the growth process itself, has not been undertaken. Here the effects of exposure to four different dyes (alizarin, alizarin complexone, calcein, oxytetracycline) and isotope spikes (Ba and Sr) on the growth rates of scleractinian corals are compared. Oxytetracycline increased coral growth. Alizarin, alizarin complexone, calcein, and Sr and Ba isotope spikes had no significant effect on coral growth, but polyp extension appeared reduced during exposure to alizarin and alizarin complexone. Calcein provided a more intense fluorescent mark than either alizarin or alizarin complexone. Isotope spikes were challenging to locate using isotope ratio analysis techniques. Thus, calcein appears best suited for marking short-term calcification increments in corals, while a combination of alizarin or alizarin complexone and calcein may be useful for dual labeling experiments as there is little overlap in their fluorescence spectra.Funding for this work was provided by a Lizard Island Doctoral Fellowship, the Ocean Life Institute, NSF OCE-1041106, and an International Society for Reef Studies / Ocean Conservancy Fellowship. This material is based upon work supported under a National Science Foundation Graduate Research Fellowship and a National Science Foundation International Post-Doctoral Fellowship
    • 

    corecore