113 research outputs found

    In vivo fascicle length measurements via B-mode ultrasound imaging with single vs dual transducer arrangements

    Get PDF
    Ultrasonography is a useful technique to study muscle contractions in vivo, however larger muscles like vastus lateralis may be difficult to visualise with smaller, commonly used transducers. Fascicle length is often estimated using linear trigonometry to extrapolate fascicle length to regions where the fascicle is not visible. However, this approach has not been compared to measurements made with a larger field of view for dynamic muscle contractions. Here we compared two different single-transducer extrapolation methods to measure VL muscle fascicle length to a direct measurement made using two synchronised, in-series transducers. The first method used pennation angle and muscle thickness to extrapolate fascicle length outside the image (extrapolate method). The second method determined fascicle length based on the extrapolated intercept between a fascicle and the aponeurosis (intercept method). Nine participants performed maximal effort, isometric, knee extension contractions on a dynamometer at 10° increments from 50 to 100° of knee flexion. Fascicle length and torque were simultaneously recorded for offline analysis. The dual transducer method showed similar patterns of fascicle length change (overall mean coefficient of multiple correlation was 0.76 and 0.71 compared to extrapolate and intercept methods respectively), but reached different absolute lengths during the contractions. This had the effect of producing force–length curves of the same shape, but each curve was shifted in terms of absolute length. We concluded that dual transducers are beneficial for studies that examine absolute fascicle lengths, whereas either of the single transducer methods may produce similar results for normalised length changes, and repeated measures experimental designs

    Medial gastrocnemius muscle stiffness cannot explain the increased ankle joint range of motion following passive stretching in children with cerebral palsy.

    Get PDF
    Stretching is often used to increase/maintain joint range of motion (ROM) in children with cerebral palsy (CP) but the effectiveness of these interventions is limited. Therefore, this study aimed to determine the acute changes in muscle-tendon lengthening properties that contribute to increased ROM after a bout of stretching in children with CP. Eleven children with spastic CP (age:12.1(3)y, 5/6 hemiplegia/diplegia, 7/4 GMFCS level I/II) participated in this study. Each child received 3 sets of 5 × 20 s passive, manual static dorsiflexion stretches separated by 30 s rest, and 60 s rest between sets. Pre- and immediately post-stretching, ultrasound was used to measure medial gastrocnemius fascicle lengthening continuously over the full ROM and an individual common ROM pre- to post-stretching. Simultaneously, 3D motion of two marker clusters on the shank and the foot was captured to calculate ankle angle, and ankle joint torque was calculated from manually applied torques and forces on a 6DoF load cell. After stretching, ROM was increased (9.9° (12.0), P = 0.005). Over a ROM common to both pre and post measurements, there were no changes in fascicle lengthening or torque. The maximal ankle joint torque tolerated by the participants increased (2.9(2.4) Nm, P = 0.003) and at this highest passive torque maximal fascicle length was 2.8(2.4) mm greater (P = 0.009) when compared to before stretching. These results indicate that the stiffness of the muscle fascicles in children with CP remain unaltered by an acute bout of stretching. This article is protected by copyright. All rights reserved

    The Energy of Muscle Contraction. I. Tissue Force and Deformation During Fixed-End Contractions

    Get PDF
    During contraction the energy of muscle tissue increases due to energy from the hydrolysis of ATP. This energy is distributed across the tissue as strain-energy potentials in the contractile elements, strain-energy potential from the 3D deformation of the base-material tissue (containing cellular and extracellular matrix effects), energy related to changes in the muscle\u27s nearly incompressible volume and external work done at the muscle surface. Thus, energy is redistributed through the muscle\u27s tissue as it contracts, with only a component of this energy being used to do mechanical work and develop forces in the muscle\u27s longitudinal direction. Understanding how the strain-energy potentials are redistributed through the muscle tissue will help enlighten why the mechanical performance of whole muscle in its longitudinal direction does not match the performance that would be expected from the contractile elements alone. Here we demonstrate these physical effects using a 3D muscle model based on the finite element method. The tissue deformations within contracting muscle are large, and so the mechanics of contraction were explained using the principles of continuum mechanics for large deformations. We present simulations of a contracting medial gastrocnemius muscle, showing tissue deformations that mirror observations from magnetic resonance imaging. This paper tracks the redistribution of strain-energy potentials through the muscle tissue during fixed-end contractions, and shows how fibre shortening, pennation angle, transverse bulging and anisotropy in the stress and strain of the muscle tissue are all related to the interaction between the material properties of the muscle and the action of the contractile elements

    The Effect of Multidirectional Loading on Contractions of the M. Medial Gastrocnemius

    Get PDF
    Research has shown that compression of muscle can lead to a change in muscle force. Most studies show compression to lead to a reduction in muscle force, although recent research has shown that increases are also possible. Based on methodological differences in the loading design between studies, it seems that muscle length and the direction of transverse loading influence the effect of muscle compression on force production. Thus, in our current study we implement these two factors to influence the effects of muscle loading. In contrast to long resting length of the medial gastrocnemius (MG) in most studies, we use a shorter MG resting length by having participant seated with their knees at a 90° angle. Where previous studies have used unidirectional loads to compress the MG, in this study we applied a multidirectional load using a sling setup. Multidirectional loading using a sling setup has been shown to cause muscle force reductions in previous research. As a result of our choices in experimental design we observed changes in the effects of muscle loading compared to previous research. In the present study we observed no changes in muscle force due to muscle loading. Muscle thickness and pennation angle showed minor but significant increases during contraction. However, no significant changes occurred between unloaded and loaded trials. Fascicle thickness and length showed different patterns of change compared to previous research. We show that muscle loading does not result in force reduction in all situations and is possibly linked to differences in muscle architecture and muscle length

    A Patient-Specific Foot Model for the Estimate of Ankle Joint Forces in Patients with Juvenile Idiopathic Arthritis

    Get PDF
    Juvenile idiopathic arthritis (JIA) is the leading cause of childhood disability from a musculoskeletal disorder. It generally affects large joints such as the knee and the ankle, often causing structural damage. Different factors contribute to the damage onset, including altered joint loading and other mechanical factors, associated with pain and inflammation. The prediction of patients' joint loading can hence be a valuable tool in understanding the disease mechanisms involved in structural damage progression. A number of lower-limb musculoskeletal models have been proposed to analyse the hip and knee joints, but juvenile models of the foot are still lacking. This paper presents a modelling pipeline that allows the creation of juvenile patient-specific models starting from lower limb kinematics and foot and ankle MRI data. This pipeline has been applied to data from three children with JIA and the importance of patient-specific parameters and modelling assumptions has been tested in a sensitivity analysis focused on the variation of the joint reaction forces. This analysis highlighted the criticality of patient-specific definition of the ankle joint axes and location of the Achilles tendon insertions. Patient-specific detection of the Tibialis Anterior, Tibialis Posterior, and Peroneus Longus origins and insertions were also shown to be important

    The Energy of Muscle Contraction. II. Transverse Compression and Work

    Get PDF
    In this study we examined how the strain energies within a muscle are related to changes in longitudinal force when the muscle is exposed to an external transverse load. We implemented a three-dimensional (3D) finite element model of contracting muscle using the principle of minimum total energy and allowing the redistribution of energy through different strain energy-densities. This allowed us to determine the importance of the strain energy-densities to the transverse forces developed by the muscle. We ran a series of in silica experiments on muscle blocks varying in initial pennation angle, muscle length, and external transverse load. As muscle contracts it maintains a near constant volume. As such, any changes in muscle length are balanced by deformations in the transverse directions such as muscle thickness or muscle width. Muscle develops transverse forces as it expands. In many situations external forces act to counteract these transverse forces and the muscle responds to external transverse loads while both passive and active. The muscle blocks used in our simulations decreased in thickness and pennation angle when passively compressed and pushed back on the load when they were activated. Activation of the compressed muscle blocks led either to an increase or decrease in muscle thickness depending on whether the initial pennation angle was less than or greater than 15°, respectively. Furthermore, the strain energy increased and redistributed across the different strain-energy potentials during contraction. The volumetric strain energy-density varied with muscle length and pennation angle and was reduced with greater transverse load for most initial muscle lengths and pennation angles. External transverse load reduced the longitudinal muscle force for initial pennation angles of β0 = 0°. Whereas for pennate muscle (β0 > 0°) longitudinal force changed (increase or decrease) depending on the muscle length, pennation angle and the direction of the external load relative to the muscle fibres. For muscle blocks with initial pennation angles β0 ≤ 20° the reduction in longitudinal muscle force coincided with a reduction in volumetric strain energy-density

    Subject-specific upper extremity modelling

    No full text
    Insight into the mechanical interaction between muscles and bones can be of great help to understand normal function of the human body and to improve diagnoses and treatments of musculoskeletal disorders. This research presented in this thesis aims to improve the predictions of a musculoskeletal model of the shoulder and elbow (the Delft Shoulder and Elbow Model or DSEM) by extracting anatomical information from MRI scans and other imaging modalities. Several techniques are presented to personalise anatomical parameters and the effect on muscle and joint force predictions are calculated. Due to difficulties related to validation of modelling results and the limited ability to measure all relevant model parameters in vivo, it is concluded that subject-specific models are not likely to lead to a vast new range of applications in the near future.BioMechanical EngineeringMechanical, Maritime and Materials Engineerin

    Predicting muscle forces in the shoulder by constraining the inverse optimisation with EMG and a forward muscle model

    No full text
    The Dutch Shoulder and Elbow Model (DSEM) is a musculoskeletal model of the shoulder that can be used to predict internal shoulder loading (muscle forces, joint reaction forces, etc.). The DSEM uses an inverse optimisation method to predict muscle forces from net joint moments. In this study two new modes are presented that constrain the inverse optimisation with muscle force boundaries based on muscle dynamics (inverse forward dynamical mode) and boundaries based on EMG-recordings (EMG-assisted mode). The new modes were validated with measurements of two standardised movements (abduction and ante exion) from two subjects. A proof of concept has been given that both new modes work. It was concluded that DSEM predictions can be dominated by morphological differences between the subject and the cadaver on which the DSEM is based. Until better scaling routines are developed the IFDO mode is not very useful. When EMG-constraints are added, muscle and GH-joint reaction forces are predicted to be higher. Adding EMG for one muscle can predict cocontraction in other muscles. By adding EMG-based constraints, the DSEM can account for individual strategies in control strategy for the data that was analysed and is therefore an interesting topic for future research.BioMechanical EngineeringMechanical, Maritime and Materials Engineerin

    A new framework for analysis of three-dimensional shape and architecture of human skeletal muscles from in vivo imaging data

    No full text
    A new framework is presented for comprehensive analysis of the three-dimensional shape and architecture of human skeletal muscles from magnetic resonance and diffusion tensor imaging data. The framework comprises three key features: 1) identification of points on the surface of and inside a muscle that have a correspondence to points on and inside another muscle, 2) reconstruction of average muscle shape and average muscle fiber orientations, and 3) utilization of data on between-muscle variation to visualize and make statistical inferences about changes or differences in muscle shape and architecture. The general use of the framework is demonstrated by its application to three case studies. Analysis of data obtained before and after 8 wk of strength training revealed there was little regional variation in hypertrophy of the vastus medialis and vastus lateralis and no systematic change in pennation angle. Analysis of passive muscle lengthening revealed heterogeneous changes in shape of the medial gastrocnemius and confirmed the ability of the methods to detect subtle changes in muscle fiber orientation. Analysis of the medial gastrocnemius of children with unilateral cerebral palsy showed that muscles in the more-affected limb were shorter, thinner, and less wide than muscles in the less-affected limb and had slightly more pennate muscle fibers in the central and proximal part of the muscle. Among other applications, the framework can be used to explore the mechanics of muscle contraction, investigate adaptations of muscle architecture, build anatomically realistic computational models of skeletal muscles, and compare muscle shape and architecture between species. NEW &amp; NOTEWORTHY Muscle architecture is conventionally measured using simple scalar metrics such as muscle volume and average fascicle lengths. Here, a new framework is proposed for analysis of complex changes in three-dimensional architecture of whole human muscles from magnetic resonance and diffusion tensor imaging data. The general use of the framework is demonstrated through visualization, quantification, and statistical analysis of the effect of strength training, passive lengthening and cerebral palsy on three-dimensional muscle shape and architecture.</p
    • …
    corecore