42 research outputs found

    A note on abscissas of Dirichlet series

    Full text link
    [EN] We present an abstract approach to the abscissas of convergence of vector-valued Dirichlet series. As a consequence we deduce that the abscissas for Hardy spaces of Dirichlet series are all equal. We also introduce and study weak versions of the abscissas for scalar-valued Dirichlet series.A. Defant: Partially supported by MINECO and FEDER MTM2017-83262-C2-1-P. A. PĂ©rez: Supported by La Caixa Foundation, MINECO and FEDER MTM2014-57838-C2-1-P and FundaciĂłn SĂ©neca - RegiĂłn de Murcia (CARM 19368/PI/14). P. Sevilla-Peris: Supported by MINECO and FEDER MTM2017-83262-C2-1-P.Defant, A.; PĂ©rez, A.; Sevilla Peris, P. (2019). A note on abscissas of Dirichlet series. Revista de la Real Academia de Ciencias Exactas FĂ­sicas y Naturales Serie A MatemĂĄticas. 113(3):2639-2653. https://doi.org/10.1007/s13398-019-00647-yS263926531133Bayart, F.: Hardy spaces of Dirichlet series and their composition operators. Mon. Math. 136(3), 203–236 (2002)Bohnenblust, H.F., Hille, E.: On the absolute convergence of Dirichlet series. Ann Math. 32(3), 600–622 (1931)Bohr, H.: Über die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichlet–schen Reihen ∑ anns\sum \,\frac{a_n}{n^s} ∑ a n n s . Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl., pp. 441–488 (1913)Bonet, J.: Abscissas of weak convergence of vector valued Dirichlet series. J. Funct. Anal. 269(12), 3914–3927 (2015)Carando, D., Defant, A., Sevilla-Peris, P.: Bohr’s absolute convergence problem for Hp\cal{H}_p H p -Dirichlet series in Banach spaces. Anal. PDE 7(2), 513–527 (2014)Carando, D., Defant, A., Sevilla-Peris, P.: Some polynomial versions of cotype and applications. J. Funct. Anal. 270(1), 68–87 (2016)Defant, A., GarcĂ­a, D., Maestre, M., PĂ©rez-GarcĂ­a, D.: Bohr’s strip for vector valued Dirichlet series. Math. Ann. 342(3), 533–555 (2008)Defant, A., GarcĂ­a, D., Maestre, M., Sevilla–Peris, P.: Dirichlet Series and Holomorphic Funcions in High Dimensions, vol. 37 of New Mathematical Monographs. Cambridge University Press, Cambridge (2019)Defant, A., PĂ©rez, A.: Optimal comparison of the pp p -norms of Dirichlet polynomials. Israel J. Math. 221(2), 837–852 (2017)Defant, A., PĂ©rez, A.: Hardy spaces of vector-valued Dirichlet series. Studia Math. 243(1), 53–78 (2018)Diestel, J., Jarchow, H., Tonge, A.: Absolutely summing operators, vol. 43 of Cambridge studies in advanced mathematics. Cambridge University Press, Cambridge (1995)Maurizi, B., QueffĂ©lec, H.: Some remarks on the algebra of bounded Dirichlet series. J. Fourier Anal. Appl. 16(5), 676–692 (2010)QueffĂ©lec, H., QueffĂ©lec, M.: Diophantine approximation and Dirichlet series, vol. 2 of Harish–Chandra research institute lecture notes. Hindustan Book Agency, New Delhi (2013

    The multiplicative property characterizes ℓp\ell_p and LpL_p norms

    Full text link
    We show that ℓp\ell_p norms are characterized as the unique norms which are both invariant under coordinate permutation and multiplicative with respect to tensor products. Similarly, the LpL_p norms are the unique rearrangement-invariant norms on a probability space such that ∄XY∄=∄X∄⋅∄Y∄\|X Y\|=\|X\|\cdot\|Y\| for every pair X,YX,Y of independent random variables. Our proof relies on Cram\'er's large deviation theorem.Comment: 8 pages, 1 figur

    Quantum chaos, random matrix theory, and statistical mechanics in two dimensions - a unified approach

    Full text link
    We present a theory where the statistical mechanics for dilute ideal gases can be derived from random matrix approach. We show the connection of this approach with Srednicki approach which connects Berry conjecture with statistical mechanics. We further establish a link between Berry conjecture and random matrix theory, thus providing a unified edifice for quantum chaos, random matrix theory, and statistical mechanics. In the course of arguing for these connections, we observe sum rules associated with the outstanding counting problem in the theory of braid groups. We are able to show that the presented approach leads to the second law of thermodynamics.Comment: 23 pages, TeX typ

    Almost sure-sign convergence of Hardy-type Dirichlet series

    Get PDF
    [EN] Hartman proved in 1939 that the width of the largest possible strip in the complex plane on which a Dirichlet series is uniformly a.s.- sign convergent (i.e., converges uniformly for almost all sequences of signs epsilon (n) = +/- 1) but does not convergent absolutely, equals 1/2. We study this result from a more modern point of view within the framework of so-called Hardytype Dirichlet series with values in a Banach space.Supported by CONICET-PIP 11220130100329CO, PICT 2015-2299 and UBACyT 20020130100474BA. Supported by MICINN MTM2017-83262-C2-1-P. Supported by MICINN MTM2017-83262-C2-1-P and UPV-SP20120700.Carando, D.; Defant, A.; Sevilla Peris, P. (2018). Almost sure-sign convergence of Hardy-type Dirichlet series. Journal d Analyse MathĂ©matique. 135(1):225-247. https://doi.org/10.1007/s11854-018-0034-yS2252471351A. Aleman, J.-F. Olsen, and E. Saksman, Fourier multipliers for Hardy spaces of Dirichlet series, Int. Math. Res. Not. IMRN 16 (2014), 4368–4378.R. Balasubramanian, B. Calado, and H. QueffĂ©lec, The Bohr inequality for ordinary Dirichlet series Studia Math. 175 (2006), 285–304.F. Bayart, Hardy spaces of Dirichlet series and their composition operators, Monatsh. Math. 136 (2002), 203–236.F. Bayart, A. Defant, L. Frerick, M. Maestre, and P. Sevilla-Peris, Monomial series expansion of Hp-functions and multipliers ofHp-Dirichlet series, Math. Ann. 368 (2017), 837–876.F. Bayart, D. Pellegrino, and J. B. Seoane-SepĂșlveda, The Bohr radius of the n-dimensional polydisk is equivalent to (log⁥n)/n\sqrt {\left( {\log n} \right)/n} ( log n ) / n , Adv. Math. 264 (2014), 726–746.F. Bayart, H. QueffĂ©lec, and K. Seip, Approximation numbers of composition operators on Hp spaces of Dirichlet series, Ann. Inst. Fourier (Grenoble) 66 (2016), 551–588.H. F. Bohnenblust and E. Hille. On the absolute convergence of Dirichlet series, Ann. of Math. (2) 32 (1931), 600–622.H. Bohr, Über die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichlet–schen Reihen ∑anns\sum {\frac{{{a_n}}}{{{n^s}}}} ∑ a n n s , Nachr. Ges.Wiss. Göttingen, Math. Phys. Kl., 1913, pp. 441–488.D. Carando, A. Defant, and P. Sevilla-Peris, Bohr’s absolute convergence problem for Hp- Dirichlet series in Banach spaces, Anal. PDE 7 (2014), 513–527.D. Carando, A. Defant, and P. Sevilla-Peris, Some polynomial versions of cotype and applications, J. Funct. Anal. 270 (2016), 68–87.B. J. Cole and T. W. Gamelin, Representing measures and Hardy spaces for the infinite polydisk algebra, Proc. London Math. Soc. (3) 53 (1986), 112–142.R. de la BretĂšche. Sur l’ordre de grandeur des polynĂŽmes de Dirichlet, Acta Arith. 134 (2008), 141–148.A. Defant, L. Frerick, J. Ortega-CerdĂ , M. OunĂ€ies, and K. Seip, The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive, Ann. of Math. (2) 174 (2011), 485–497.A. Defant, D. GarcĂ­a, M. Maestre, and D. PĂ©rez-GarcĂ­a, Bohr’s strip for vector valued Dirichlet series, Math. Ann. 342 (2008), 533–555.A. Defant, M. Maestre, and U. Schwarting, Bohr radii of vector valued holomorphic functions, Adv. Math. 231 (2012), 2837–2857.A. Defant and A. PĂ©rez, Hardy spaces of vector-valued Dirichlet series, StudiaMath. (to appear), 2018 DOI: 10.4064/sm170303-26-7.A. Defant, U. Schwarting, and P. Sevilla-Peris, Estimates for vector valued Dirichlet polynomials, Monatsh. Math. 175 (2014), 89–116.J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge University Press, Cambridge, 1995.P. Hartman, On Dirichlet series involving random coefficients, Amer. J. Math. 61 (1939), 955–964.H. Hedenmalm, P. Lindqvist, and K. Seip, A Hilbert space of Dirichlet series and systems of dilated functions in L2(0, 1), Duke Math. J. 86 (1997), 1–37.A. Hildebrand, and G. Tenenbaum, Integers without large prime factors, J. Thor. Nombres Bordeaux 5 (1993), 411–484.S. V. Konyagin and H. QueffĂ©lec, The translation 1/2 in the theory of Dirichlet series, Real Anal. Exchange 27 (2001/02) 155–175.J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II, Springer-Verlag, Berlin, 1979.B. Maurizi and H. QueffĂ©lec, Some remarks on the algebra of bounded Dirichlet series, J. Fourier Anal. Appl. 16 (2010), 676–692.H. QueffĂ©lec, H. Bohr’s vision of ordinary Dirichlet series; old and new results, J. Anal. 3 (1995), 43–60.H. QueffĂ©lec and M. QueffĂ©lec, Diophantine Approximation and Dirichlet Series, Hindustan Book Agency, New Delhi, 2013.G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press, Cambridge, 1995

    Estimates for vector valued Dirichlet polynomials

    Full text link
    [EN] We estimate the -norm of finite Dirichlet polynomials with coefficients in a Banach space. Our estimates quantify several recent results on Bohr's strips of uniform but non absolute convergence of Dirichlet series in Banach spaces.A. Defant and P. Sevilla-Peris were supported by MICINN Project MTM2011-22417.Defant, A.; Schwarting, U.; Sevilla Peris, P. (2014). Estimates for vector valued Dirichlet polynomials. Monatshefte fïżœr Mathematik. 175(1):89-116. https://doi.org/10.1007/s00605-013-0600-4S891161751Balasubramanian, R., Calado, B., QueffĂ©lec, H.: The Bohr inequality for ordinary Dirichlet series. Studia Math. 175(3), 285–304 (2006)Bayart, F.: Hardy spaces of Dirichlet series and their composition operators. Monatsh. Math. 136(3), 203–236 (2002)Bennett, G.: Inclusion mappings between lpl^{p} l p spaces. J. Funct. Anal. 13, 20–27 (1973)Bohnenblust, H.F., Hille, E.: On the absolute convergence of Dirichlet series. Ann. Math. (2) 32(3), 600–622 (1931)Bohr, H.: Über die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichlet–schen Reihen ∑anns\sum \frac{a_n}{n^s} ∑ a n n s . Nachr. Ges. Wiss. Göttingen Math. Phys. Kl., Heft 4, 441–488 (1913)Bohr, H.: Über die gleichmĂ€ĂŸige Konvergenz Dirichletscher Reihen. J. Reine Angew. Math. 143, 203–211 (1913)Carl, B.: Absolut- (p, 1)(p,\,1) ( p , 1 ) -summierende identische Operatoren von lul_{u} l u in lvl_{v} l v . Math. Nachr. 63, 353–360 (1974)Carlson, F.: Contributions Ă  la thĂ©orie des sĂ©ries de Dirichlet. Note i. Ark. fĂ¶â€r Mat., Astron. och Fys. 16(18), 1–19 (1922)de la BretĂšche, R.: Sur l’ordre de grandeur des polynĂŽmes de Dirichlet. Acta Arith. 134(2), 141–148 (2008)Defant, A., Frerick, L., Ortega-CerdĂ , J., OunaĂŻes, M., Seip, K.: The Bohnenblust–Hille inequality for homogeneous polynomials is hypercontractive. Ann. Math. (2) 174(1), 485–497 (2011)Defant, A., GarcĂ­a, D., Maestre, M., PĂ©rez-GarcĂ­a, D.: Bohr’s strip for vector valued Dirichlet series. Math. Ann. 342(3), 533–555 (2008)Defant, A., GarcĂ­a, D., Maestre, M., Sevilla-Peris, P.: Bohr’s strips for Dirichlet series in Banach spaces. Funct. Approx. Comment. Math. 44(part 2), 165–189 (2011)Defant, A., Maestre, M., Schwarting, U.: Bohr radii of vector valued holomorphic functions. Adv. Math. 231(5), 2837–2857 (2012)Defant, A., Popa, D., Schwarting, U.: Coordinatewise multiple summing operators in Banach spaces. J. Funct. Anal. 259(1), 220–242 (2010)Defant, A., Sevilla-Peris, P.: Convergence of Dirichlet polynomials in Banach spaces. Trans. Am. Math. Soc. 363(2), 681–697 (2011)Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics, vol. 43. Cambridge University Press, Cambridge (1995)Harris, L.A.: Bounds on the derivatives of holomorphic functions of vectors. In: Analyse fonctionnelle et applications (Comptes Rendus Colloq. Analyse, Inst. Mat., Univ. Federal Rio de Janeiro, Rio de Janeiro, 1972), pp. 145–163. ActualitĂ©s Aci. Indust., No. 1367. Hermann, Paris (1975)Hedenmalm, H., Lindqvist, P., Seip, K.: A Hilbert space of Dirichlet series and systems of dilated functions in L2(0,1)L^2(0,1) L 2 ( 0 , 1 ) . Duke Math. J. 86(1), 1–37 (1997)Kahane, J.-P.: Some Random Series of Functions. Cambridge Studies in Advanced Mathematics, vol. 5, 2nd edn. Cambridge University Press, Cambridge (1985)Konyagin, S.V., QueffĂ©lec, H.: The translation 12\frac{1}{2} 1 2 in the theory of Dirichlet series. Real Anal. Exch. 27(1):155–175 (2001/2002)KwapieƄ, S.: Some remarks on (p, q)(p,\, q) ( p , q ) -absolutely summing operators in lpl_{p} l p -spaces. Studia Math. 29, 327–337 (1968)Ledoux, M., Talagrand, M.: Probability in Banach Spaces: Isoperimetry and Processes, reprint of the 1991 edn. Classics in Mathematics. Springer, Berlin (2011)Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. I. Sequence Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 92. Springer, Berlin (1977)Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. II, Function Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97. Springer, Berlin (1979)Maurizi, B., QueffĂ©lec, H.: Some remarks on the algebra of bounded Dirichlet series. J. Fourier Anal. Appl. 16, 676–692 (2010)Prachar, K.: Primzahlverteilung. Springer, Berlin (1957)QueffĂ©lec, H.: H. Bohr’s vision of ordinary Dirichlet series; old and new results. J. Anal. 3, 43–60 (1995)Tomczak-Jaegermann, N.: Banach–Mazur Distances and Finite-Dimensional Operator Ideals. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38. Longman Scientific & Technical, Harlow (1989

    Multipliers of Dirichlet series and monomial series expansions of holomorphic functions in infinitely many variables

    Full text link
    [EN] Let H-infinity be the set of all ordinary Dirichlet series D = Sigma(n) a(n)(n-1) ann-s representing bounded holomorphic functions on the right half plane. A completely multiplicative sequence (b(n)) of complex numbers is said to be an l(1)-multiplier for H-infinity whenever Sigma(n vertical bar)a(n)b(n vertical bar) < infinity for every D is an element of H-infinity. We study the problem of describing such sequences (b(n)) in terms of the asymptotic decay of the subsequence (b(pj)), where p(j) denotes the j th prime number. Given a completely multiplicative sequence b = (b(n)) we prove (among other results): b is an l(1)-multiplier for H-infinity provided vertical bar b(pj)vertical bar < 1 for all j and (lim(n)) over bar 1/log(n) Sigma(n)(j=1) b(p j)*(2) < 1, and conversely, if b is an l(1)-multiplier for H-infinity, then vertical bar b(pj)vertical bar < 1 for all j and (lim(n)) over bar 1/log(n) Sigma(n)(j=1) b(p j)*(2) <= 1 (here b* stands for the decreasing rearrangement of b). Following an ingenious idea of Harald Bohr it turns out that this problem is intimately related with the question of characterizing those sequences z in the infinite dimensional polydisk D-infinity (the open unit ball of l(infinity)) for which every bounded and holomorphic function f on D-infinity has an absolutely convergent monomial series expansion Sigma(alpha) partial derivative alpha f (0)/alpha! z alpha. Moreover, we study analogous problems in Hardy spaces of Dirichlet series and Hardy spaces of functions on the infinite dimensional polytorus T-infinity.The second, fourth and fifth authors were supported by MINECO and FEDER Project MTM2014-57838-C2-2-P. The fourth author was also supported by PrometeoII/2013/013. The fifth author was also supported by project SP-UPV20120700.Bayart, F.; Defant, A.; Frerick, L.; Maestre, M.; Sevilla Peris, P. (2017). Multipliers of Dirichlet series and monomial series expansions of holomorphic functions in infinitely many variables. Mathematische Annalen. 368(1-2):837-876. https://doi.org/10.1007/s00208-016-1511-1S8378763681-2Aleman, A., Olsen, J.-F., Saksman, E.: Fatou and brother Riesz theorems in the infinite-dimensional polydisc. arXiv:1512.01509Balasubramanian, R., Calado, B., QueffĂ©lec, H.: The Bohr inequality for ordinary Dirichlet series. Studia Math. 175(3), 285–304 (2006)Bayart, F.: Hardy spaces of Dirichlet series and their composition operators. Monatsh. Math. 136(3), 203–236 (2002)Bayart, F., Pellegrino, D., Seoane-SepĂșlveda, J.B.: The Bohr radius of the nn n -dimensional polydisk is equivalent to (log⁥n)/n\sqrt{(\log n)/n} ( log n ) / n . Adv. Math. 264:726–746 (2014)Bohnenblust, H.F., Hille, E.: On the absolute convergence of Dirichlet series. Ann. Math. 32(3), 600–622 (1931)Bohr, H.: Über die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichlet–schen Reihen ∑ anns\sum \,\frac{a_n}{n^s} ∑ a n n s . Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl. 441–488 (1913)Bohr, H.: Über die gleichmĂ€ĂŸige Konvergenz Dirichletscher Reihen. J. Reine Angew. Math. 143, 203–211 (1913)Cole, B.J., Gamelin., T.W.: Representing measures and Hardy spaces for the infinite polydisk algebra. Proc. Lond. Math. Soc. 53(1), 112–142 (1986)Davie, A.M., Gamelin, T.W.: A theorem on polynomial-star approximation. Proc. Am. Math. Soc. 106(2), 351–356 (1989)de la BretĂšche, R.: Sur l’ordre de grandeur des polynĂŽmes de Dirichlet. Acta Arith. 134(2), 141–148 (2008)Defant, A., Frerick, L., Ortega-CerdĂ , J., OunaĂŻes, M., Seip, K.: The Bohnenblust–Hille inequality for homogeneous polynomials is hypercontractive. Ann. Math. 174(1), 485–497 (2011)Defant, A., GarcĂ­a, D., Maestre, M.: New strips of convergence for Dirichlet series. Publ. Mat. 54(2), 369–388 (2010)Defant, A., GarcĂ­a, D., Maestre, M., PĂ©rez-GarcĂ­a, D.: Bohr’s strip for vector valued Dirichlet series. Math. Ann. 342(3), 533–555 (2008)Defant, A., Maestre, M., Prengel, C.: Domains of convergence for monomial expansions of holomorphic functions in infinitely many variables. J. Reine Angew. Math. 634, 13–49 (2009)Dineen, S.: Complex Analysis on Infinite-dimensional Spaces. Springer Monographs in Mathematics. Springer-Verlag London Ltd, London (1999)Floret, K.: Natural norms on symmetric tensor products of normed spaces. Note Mat. 17(153–188), 1997 (1999)Harris, L. A.: Bounds on the derivatives of holomorphic functions of vectors. In: Analyse fonctionnelle et applications (Comptes Rendus Colloq. Analyse, Inst. Mat., Univ. Federal Rio de Janeiro, Rio de Janeiro, 1972), pp. 145–163. ActualitĂ©s Aci. Indust., No. 1367. Hermann, Paris (1975)Hedenmalm, H., Lindqvist, P., Seip, K.: A Hilbert space of Dirichlet series and systems of dilated functions in L2(0,1)L^2(0,1) L 2 ( 0 , 1 ) . Duke Math. J. 86(1), 1–37 (1997)Helson, H., Lowdenslager, D.: Prediction theory and Fourier series in several variables. Acta Math. 99, 165–202 (1958)Hibert, D.: Gesammelte Abhandlungen (Band 3). Verlag von Julius Springer, Berlin (1935)Hilbert, D.: Wesen und Ziele einer Analysis der unendlichvielen unabhĂ€ngigen Variablen. Rend. del Circolo Mat. di Palermo 27, 59–74 (1909)Kahane, J.-P.: Some Random Series of Functions, Volume 5 of Cambridge Studies in Advanced Mathematics, second edn. Cambridge University Press, Cambridge (1985)Konyagin, S.V., QueffĂ©lec, H.: The translation 12\frac{1}{2} 1 2 in the theory of Dirichlet series. Real Anal. Exchange 27(1):155–175 (2001/2002)Maurizi, B., QueffĂ©lec, H.: Some remarks on the algebra of bounded Dirichlet series. J. Fourier Anal. Appl. 16(5), 676–692 (2010)QueffĂ©lec, H.: H. Bohr’s vision of ordinary Dirichlet series; old and new results. J. Anal. 3, 43–60 (1995)QueffĂ©lec, H., QueffĂ©lec, M.: Diophantine Approximation and Dirichlet Series. HRI Lecture Notes Series, New Delhi (2013)Rudin, W.: Function Theory in Polydisks. W. A. Benjamin Inc, New York (1969)Toeplitz, O.: Über eine bei den Dirichletschen Reihen auftretende Aufgabe aus der Theorie der Potenzreihen von unendlichvielen VerĂ€nderlichen. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, pp. 417–432 (1913)Weissler, F.B.: Logarithmic Sobolev inequalities and hypercontractive estimates on the circle. J. Funct. Anal. 37(2), 218–234 (1980)Wojtaszczyk, P.: Banach Spaces for Analysts, Volume 25 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1991

    Crop pests and predators exhibit inconsistent responses to surrounding landscape composition

    Get PDF
    The idea that noncrop habitat enhances pest control and represents a win–win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win–win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies

    Crop pests and predators exhibit inconsistent responses to surrounding landscape composition

    Get PDF
    The idea that noncrop habitat enhances pest control and represents a win–win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win–win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies

    ĐąĐ”ĐŸŃ€ĐžŃ огр

    No full text
    corecore