17 research outputs found

    Centrosomes : methods for preparation

    Get PDF
    The centrosome of higher eukaryotic cells is the main microtubule-organising centre. To understand the molecular mechanisms underlying this organelle's biogenesis and important functions in several cellular processes, such as microtubule nucleation, cell division and stress response, it was critical to develop methods for isolating biochemically meaningful quantities of centrosomes. Centrosomes have been isolated from a variety of organisms and based on these preparations, numerous aspects of this intriguing organelle's morphological, functional and biochemical properties have been uncovered. Better isolation procedures along with the development of new technologies, like RNAi (ribonucleic acid interference) and the increasing accuracy of mass spectrometry and electron microscopy techniques, have profoundly improved our knowledge of the centrosome, leading to a better understanding of its implications in various cellular processes and in diseases

    The Cdc42 GEF Intersectin 2 controls mitotic spindle orientation to form the lumen during epithelial morphogenesis

    Get PDF
    Epithelial organs are made of tubes and cavities lined by a monolayer of polarized cells that enclose the central lumen. Lumen formation is a crucial step in the formation of epithelial organs. The Rho guanosine triphosphatase (GTPase) Cdc42, which is a master regulator of cell polarity, regulates the formation of the central lumen in epithelial morphogenesis. However, how Cdc42 is regulated during this process is still poorly understood. Guanine nucleotide exchange factors (GEFs) control the activation of small GTPases. Using the three-dimensional Madin–Darby canine kidney model, we have identified a Cdc42-specific GEF, Intersectin 2 (ITSN2), which localizes to the centrosomes and regulates Cdc42 activation during epithelial morphogenesis. Silencing of either Cdc42 or ITSN2 disrupts the correct orientation of the mitotic spindle and normal lumen formation, suggesting a direct relationship between these processes. Furthermore, we demonstrated this direct relationship using LGN, a component of the machinery for mitotic spindle positioning, whose disruption also results in lumen formation defects.This work was supported by grants from the Human Frontier Science Program (HFSP-CDA 00011/2009) and Marie Curie (IRG-209382) to F. Martín- Belmonte, National Institutes of Health grants (R01 DK067153 and R01 DK074398) to K. Mostov, and grants from the Ministerio de Ciencia e Innovación to F. Martín-Belmonte (BFU2008-01916) and M.A. Alonso (BFU2006- 01925) and to F. Martín-Belmonte and M.A. Alonso (CONSOLIDER CSD2009-00016). An institutional grant from the Fundación Ramón Areces to the Centro de Biología Molecular Severo Ochoa is also acknowledged.Peer reviewe

    Centrosome-associated Chk1 prevents premature activation of cyclin-B-Cdk1 kinase

    No full text
    Entry into mitosis occurs after activation of Cdk1, resulting in chromosome condensation in the nucleus and centrosome separation, as well as increased microtubule nucleation activity in the cytoplasm. The active cyclin-B1-Cdk1 complex first appears at the centrosome, suggesting that the centrosome may facilitate the activation of mitotic regulators required for the commitment of cells to mitosis. However, the signalling pathways involved in controlling the initial activation of Cdk1 at the centrosome remain largely unknown. Here, we show that human Chk1 kinase localizes to interphase, but not mitotic, centrosomes. Chemical inhibition of Chk1 resulted in premature centrosome separation and activation of centrosome-associated Cdk1. Forced immobilization of kinase-inactive Chk1 to centrosomes also resulted in premature Cdk1 activation. Conversely, under such conditions wild-type Chk1 impaired activation of centrosome-associated Cdk1, thereby resulting in DNA endoreplication and centrosome amplification. Activation of centrosomal Cdk1 in late prophase seemed to be mediated by cytoplasmic Cdc25B, whose activity is controlled by centrosome-associated Chk1. These results suggest that centrosome-associated Chk1 shields centrosomal Cdk1 from unscheduled activation by cytoplasmic Cdc25B, thereby contributing to proper timing of the initial steps of cell division, including mitotic spindle formation
    corecore