158 research outputs found
Resilience of the trophic cascades in the Black Sea and Baltic Sea regime shifts
The Black Sea and the Baltic Sea are two European lake-like marine systems where regime shifts have occurred. Both ecosystems show similar features and hold comparable long-term records for the main food web components and external pressures. Here we analyse Black Sea and Baltic Sea multi-trophic time series applying the same statistical tool, which allowed us to characterize tipping points and quantify the main dynamics ruling each regime phase. In both systems a trophic cascade, consequence of overfishing, drove a shift between regimes. This work focuses on the robustness of this ecological mechanism. By simulating environmental scenarios we tested whether enhanced bottom-up effects could counteract the development of the trophic cascades once these have been triggered. We found that under certain environmental settings the trophic cascade signals blur at different levels suggesting that the observed changes resulted from a combination of heavy fishing and unfavourable conditions. Through the outlook of one single methodology applied to two different but comparable systems we discuss the obstacles we may find if we are to promote a more desirable state and management measures considering synergistic effects of fishing and future climate change
Is Diversity the Missing Link in Coastal Fisheries Management?
Fisheries management has historically focused on the population elasticity of target fish based primarily on demographic modeling, with the key assumptions of stability in environmental conditions and static trophic relationships. The predictive capacity of this fisheries framework is poor, especially in closed systems where the benthic diversity and boundary effects are important and the stock levels are low. Here, we present a probabilistic model that couples key fish populations with a complex suite of trophic, environmental, and geomorphological factors. Using 41 years of observations we model the changes in eastern Baltic cod (Gadus morhua), herring (Clupea harengus), and Baltic sprat (Sprattus sprattus balticus) for the Baltic Sea within a Bayesian network. The model predictions are spatially explicit and show the changes of the central Baltic Sea from cod-to sprat-dominated ecology over the 41 years. This also highlights how the years 2004 to 2014 deviate in terms of the typical cod–environment relationship, with environmental factors such as salinity being less influential on cod population abundance than in previous periods. The role of macrozoobenthos abundance, biotopic rugosity, and flatfish biomass showed an increased influence in predicting cod biomass in the last decade of the study. Fisheries management that is able to accommodate shifting ecological and environmental conditions relevant to biotopic information will be more effective and realistic. Non-stationary modelling for all of the homogeneous biotope regions, while acknowledging that each has a specific ecology relevant to understanding the fish population dynamics, is essential for fisheries science and sustainable management of fish stocks
Development and resilience in three Arctic ecosystems: Baltic, Barents and Iceland Seas
In this GreenMAR project we look into the historical development of the marine ecosystems that surround the Nordic countries in an effort to forecast their future evolution. We pay particular attention to the way their food webs responded to similar stressors (warming) and fishing regimes in the past. We have compiled historical information on environmental and biological components, from plankton to fish, over the last 25 to 45 years, depending on the system. On these four ecosystems we have: (i) carried out multivariate analyses to describe their main trends and (ii) constructed stability landscapes to quantify their resilience. We will show these results and discuss their implications
Beauty is in the eye of the beholder: Management of Baltic cod stock requires an ecosystem approach
In a recent 'As We See It' article, Cardinale & Svedang (2011; Mar Ecol Prog Ser 425:297-301) used the example of the Eastern Baltic (EB) cod stock to argue that the concept of ecosystem regime shifts, especially the potential existence of alternative stable states (or dynamic regimes), blurs the fact that human exploitation (i.e. fishing) is the strongest impact on marine ecosystems. They further concluded that single-species approaches to resource management are functioning and that ecosystem-based approaches are not necessary. We (1) argue that the recent increase in the EB cod stock is inherently uncertain, (2) discuss the critique of the regime shift concept, and (3) describe why the EB cod stock dynamics demonstrates the need for an ecosystem approach to fisheries management
Reference state, structure, regime shifts, and regulatory drivers in a coastal sea over the last century : The Central Baltic Sea case
The occurrence of regime shifts in marine ecosystems has important implications for environmental legislation that requires setting reference levels and targets of quantitative restoration outcomes. The Baltic Sea ecosystem has undergone large changes in the 20(th) century related to anthropogenic pressures and climate variability, which have caused ecosystem reorganization. Here, we compiled historical information and identified relationships in our dataset using multivariate statistics and modeling across 31 biotic and abiotic variables from 1925 to 2005 in the Central Baltic Sea. We identified a series of ecosystem regime shifts in the 1930s, 1970s, and at the end of the 1980s/beginning of the 1990s. In the long term, the Central Baltic Sea showed a regime shift from a benthic to pelagic-dominated state. Historically, benthic components played a significant role in trophic transfer, while in the more recent productive system pelagic-benthic coupling was weak and pelagic components dominated. Our analysis shows that for the entire time period, productivity, climate, and hydrography mainly affected the functioning of the food web, whereas fishing became important more recently. Eutrophication had far-reaching direct and indirect impacts from a long-term perspective and changed not only the trophic state of the system but also affected higher trophic levels. Our study also suggests a switch in regulatory drivers from salinity to oxygen. The "reference ecosystem" identified in our analysis may guide the establishment of an ecosystem state baseline and threshold values for ecosystem state indicators of the Central Baltic Sea.Peer reviewe
The quiet crossing of ocean tipping points
Anthropogenic climate change profoundly alters the ocean’s environmental conditions, which, in turn, impact marine ecosystems. Some of these changes are happening fast and may be difficult to reverse. The identification and monitoring of such changes, which also includes tipping points, is an ongoing and emerging research effort. Prevention of negative impacts requires mitigation efforts based on feasible research-based pathways. Climate-induced tipping points are traditionally associated with singular catastrophic events (relative to natural variations) of dramatic negative impact. High-probability high-impact ocean tipping points due to warming, ocean acidification, and deoxygenation may be more fragmented both regionally and in time but add up to global dimensions. These tipping points in combination with gradual changes need to be addressed as seriously as singular catastrophic events in order to prevent the cumulative and often compounding negative societal and Earth system impacts
Regeneration potential of the Baltic Sea inferred from historical records
Overfishing of large predatory fish populations has resulted in lasting restructurings of entire marine food webs worldwide, with potential immense socio-economic consequences. Fortunately, some degraded ecosystems have started to show signs of regeneration. A key challenge for resource management is to anticipate the degree to which regeneration is possible, given the multiple threats ecosystems face. Here, we show that under current hydroclimatic conditions, complete regeneration of a heavily altered ecosystem –the Baltic Sea as case study– would not be possible. Instead, as the ecosystem regenerates it moves towards a new ecological baseline. This new baseline is characterized by lower and more variable biomass of the commercially important Atlantic cod, even under very low exploitation rates. Consequently, societal costs increase due to higher risk premium caused by increased uncertainty in biomass and reduced consumer surplus. Specifically, the combined economic losses amount to about 120 million € per year, which equals half of today’s maximum economic yield for the Baltic cod fishery. Our analyses suggest that shifts in ecological and economic baselines, in combination with increased biomass variability, lead to higher economic uncertainty and costs for exploited ecosystems, in particular under climate change.Kiel Cluster of Excellence 'Future Ocean
Population change in breeding boreal waterbirds in a 25-year perspective : What characterises winners and losers?
Understanding drivers of variation and trends in biodiversity change is a general scientific challenge, but also crucial for conservation and management. Previous research shows that patterns of increase and decrease are not always consistent at different spatial scales, calling for approaches combining the latter. We here explore the idea that functional traits of species may help explaining divergent population trends. Complementing a previous community level study, we here analyse data about breeding waterbirds on 58 wetlands in boreal Fennoscandia, covering gradients in latitude as well as trophic status. We used linear mixed models to address how change in local abundance over 25 years in 25 waterbird species are associated with life history traits, diet, distribution, breeding phenology, and habitat affinity. Mean abundance increased in 10 species from 1990/1991 to 2016, whereas it decreased in 15 species. Local population increases were associated with species that are early breeders and have small clutches, an affinity for luxurious wetlands, an herbivorous diet, and a wide breeding range rather than a southern distribution. Local decreases, by contrast, were associated with species having large clutches and invertivorous diet, as well as being late breeders and less confined to luxurious wetlands. The three species occurring on the highest number of wetlands all decreased in mean abundance. The fact that early breeders have done better than late fits well with previous research about adaptability to climate change, that is, response to earlier springs. We found only limited support for the idea that life history traits are good predictors of wetland level population change. Instead, diet turned out to be a strong candidate for an important driver of population change, as supported by a general decrease of invertivores and a concomitant increase of large herbivores. In a wider perspective, future research needs to address whether population growth of large-bodied aquatic herbivores affects abundance of co-occurring invertivorous species, and if so, if this is due to habitat alteration, or to interference or exploitative competition.Peer reviewe
De flora en vegetatie van lijnvormige beplantingen in Nederland
Climate change effects on freshwater biogeochemistry and riverine loads of biogenic elements to the Baltic Sea are not straight forward and are difficult to distinguish from other human drivers such as atmospheric deposition, forest and wetland management , eutrophication and hydrological alterations. Eutrophication is by far the most well-known factor affecting the biogeochemistry of the receiving waters in the various sub-basins of the Baltic Sea. However, the present literature review reveals that climate change is a compounding factor for all major drivers of freshwater biogeochemistry discussed here, although evidence is still often based on short-term and/or small-scale studies
- …