32 research outputs found

    Strategies for Pathogen Biocontrol Using Lactic Acid Bacteria and Their Metabolites: A Focus on Meat Ecosystems and Industrial Environments

    Get PDF
    The globalization of trade and lifestyle ensure that the factors responsible for the emergence of diseases are more present than ever. Despite biotechnology advancements, meat-based foods are still under scrutiny because of the presence of pathogens, which causes a loss of consumer confidence and consequently a fall in demand. In this context, Lactic Acid Bacteria (LAB) as GRAS organisms offer an alternative for developing pathogen-free foods, particularly avoiding Listeria monocytogenes, with minimal processing and fewer additives while maintaining the foods’ sensorial characteristics. The use of LAB strains, enabling us to produce antimicrobial peptides (bacteriocins) in addition to lactic acid, with an impact on quality and safety during fermentation, processing, and/or storage of meat and ready-to-eat (RTE) meat products, constitutes a promising tool. A number of bacteriocin-based strategies including the use of bioprotective cultures, purified and/or semi-purified bacteriocins as well as their inclusion in varied packaging materials under different storage conditions, have been investigated. The application of bacteriocins as part of hurdle technology using non-thermal technologies was explored for the preservation of RTE meat products. Likewise, considering that food contamination with L. monocytogenes is a consequence of the post-processing manipulation of RTE foods, the role of bacteriocinogenic LAB in the control of biofilms formed on industrial surfaces is also discussed.EEA FamailláFil: Castellano, Patricia Haydee. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Pérez Ibarreche, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Blanco Massani, Mariana Raquel. Instituto Nacional de Tecnología Industrial; Argentina.Fil: Fontana, Cecilia Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Famaillá; ArgentinaFil: Vignolo, Graciela Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentin

    Correlating Antimicrobial activity and Structure in Montmorillonite modified with Hexadecyltrimethylammonium and Silver

    Get PDF
    The relationship between antimicrobial properties and structure of montmorillonite (MMT) containing hexadecyltrimethylammonium bromide (HDTMA-Br) and silver (Ag) was determined. HDTMA was adsorbed at the clay interlayer by a cation exchange, through the positive head of the ammonium group. At higher surfactant loadings (100 and 200% cation exchange capacity (CEC); MH1 and MH2 samples, respectively) the prevalence of weak adsorption (Van der Waals forces) was observed; whereas below the clay CEC (50%, MH0.5) strong interactions predominated (cation exchange). These different interactions impacted on antimicrobial activity, increasing bactericidal capacity when the surfactant was more available to diffuse. For organo-montmorillonites (OMMT) and all samples with Ag, zeta potential pointed out electrical charge changes on the outer surface, respect to MMT. XPS analyses showed peaks attributed to clusters formation, silver oxidation, and Ag0 in MMTAg and MH0.5-Ag. The Ag0 peak was also present in MH1-Ag and MH2-Ag, the later showing an extra peak associated with AgBr. HDMTA+ and Ag adsorbed on the MMT acted synergistically against Staphylococcus aureus. This effect was less noticeable for Escherichia coli and the result was attributed to both, E. coli outer envelope which might lower the efficacy of HDMTA+ adsorbed on the MMT, and decreasing silver proportions when the surfactant loading increased. MH1-Ag presented the best bactericidal properties, showing synergistic effects against S. aureus, while maintaining activity against E. coli compared to MMT-Ag. Understanding MMT-HDMTA-Ag efficacy contributes to the design of new antimicrobial materials for potential applications in health careFil: Fernández Solarte, Alejandra María. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Tecnología de Recursos Minerales y Cerámica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Tecnología de Recursos Minerales y Cerámica; Argentina. Corporacion Universitaria Minuto de Dios.; ColombiaFil: Blanco Massani, Mariana Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Industrial; ArgentinaFil: Molina, Vanesa Magali. Instituto Nacional de Tecnología Industrial; ArgentinaFil: Benítez Guerrero, Mónica. Universidad de Malaga. Facultad de Ciencias; EspañaFil: Torres Sánchez, Rosa M.. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Tecnología de Recursos Minerales y Cerámica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Tecnología de Recursos Minerales y Cerámica; Argentin

    Pre-formulation and delivery strategies for the development of bacteriocins as next generation antibiotics

    Get PDF
    peer-reviewedBacteriocins, a class of antimicrobial peptide produced by bacteria, may offer a potential alternative to traditional antibiotics, an important step towards mitigating the ever increasing antimicrobial resistance crisis. They are active against a range of clinically relevant Gram-positive and Gram-negative bacteria. Bacteriocins have been discussed in the literature for over a century. Although they are used as preservatives in food, no medicine based on their antimicrobial activity exists on the market today. In order to formulate them into clinical antibiotics, pre-formulation studies on their biophysical and physicochemical properties that will influence their activity in vivo and their stability during manufacture must be elucidated. Thermal, pH and enzymatic stability of bacteriocins are commonly studied and regularly reported in the literature. Solubility, permeability and aggregation properties on the other hand are less frequently reported for many bacteriocins, which may contribute to their poor clinical progression. Promising cytotoxicity studies report that bacteriocins exhibit few cytotoxic effects on a variety of mammalian cell lines, at active concentrations. This review highlights the lack of quantitative data and in many cases even qualitative data, on bacteriocins’ solubility, stability, aggregation, permeability and cytotoxicity. The formulation strategies that have been explored to date, proposed routes of administration, trends in in vitro/in vivo behaviour and efforts in clinical development are discussed. The future promise of bacteriocins as a new generation of antibiotics may require tailored local delivery strategies to fulfil their potential as a force to combat antimicrobial-resistant bacterial infections

    Intraperitoneal drain placement and outcomes after elective colorectal surgery: international matched, prospective, cohort study

    Get PDF
    Despite current guidelines, intraperitoneal drain placement after elective colorectal surgery remains widespread. Drains were not associated with earlier detection of intraperitoneal collections, but were associated with prolonged hospital stay and increased risk of surgical-site infections.Background Many surgeons routinely place intraperitoneal drains after elective colorectal surgery. However, enhanced recovery after surgery guidelines recommend against their routine use owing to a lack of clear clinical benefit. This study aimed to describe international variation in intraperitoneal drain placement and the safety of this practice. Methods COMPASS (COMPlicAted intra-abdominal collectionS after colorectal Surgery) was a prospective, international, cohort study which enrolled consecutive adults undergoing elective colorectal surgery (February to March 2020). The primary outcome was the rate of intraperitoneal drain placement. Secondary outcomes included: rate and time to diagnosis of postoperative intraperitoneal collections; rate of surgical site infections (SSIs); time to discharge; and 30-day major postoperative complications (Clavien-Dindo grade at least III). After propensity score matching, multivariable logistic regression and Cox proportional hazards regression were used to estimate the independent association of the secondary outcomes with drain placement. Results Overall, 1805 patients from 22 countries were included (798 women, 44.2 per cent; median age 67.0 years). The drain insertion rate was 51.9 per cent (937 patients). After matching, drains were not associated with reduced rates (odds ratio (OR) 1.33, 95 per cent c.i. 0.79 to 2.23; P = 0.287) or earlier detection (hazard ratio (HR) 0.87, 0.33 to 2.31; P = 0.780) of collections. Although not associated with worse major postoperative complications (OR 1.09, 0.68 to 1.75; P = 0.709), drains were associated with delayed hospital discharge (HR 0.58, 0.52 to 0.66; P < 0.001) and an increased risk of SSIs (OR 2.47, 1.50 to 4.05; P < 0.001). Conclusion Intraperitoneal drain placement after elective colorectal surgery is not associated with earlier detection of postoperative collections, but prolongs hospital stay and increases SSI risk

    Adsorption of the bacteriocins produced by Lactobacillus curvatus CRL705 on a multilayer-LLDPE film for food-packaging applications

    Get PDF
    Adsorption of bacteriocins produced by Lactobacillus curvatus CRL705, lactocin 705 (whose activity depends upon complementation of two peptides, lac705α and lac705β) and bacteriocin/s with strong anti-Listeria activity, on a multilayer film was investigated. Lactocin 705 adsorption equilibrium at 30 °C was reached from 1 h of film contact. This bacteriocin exhibited a Langmuir-type adsorption, showing a mass adsorption maximum of 0.72 ± 0.05 μg cm−2 and a minimum inhibition concentration of 1 μg ml−1. The influence of impurities, generated from bacteriocinogenic strains growth, on bacteriocins adsorption to the film was investigated by inhibition area evaluation in semisolid agar. Impurities from LAB growth strongly influenced adsorption and lactocin 705 antimicrobial activity on the film, while antilisterial bacteriocin/s adsorption remained unaffected. To explain these results, a lack of lac705β and lac705α peptides complementation necessary for antimicrobial activity, while no interactions among impurities and antilisterial bacteriocin/s during adsorption was suggested. Antilisterial bacteriocin/s activity on the film was not influenced by lactocin 705 adsorption; conformational reorganization of adsorbed antilisterial bacteriocin/s in the presence of lactocin 705 could allow the adsorption of both bacteriocins while maintaining antilisterial antimicrobial activity. This study highlights the technological importance of adsorption optimization to obtain effective antimicrobial food packaging systems.Fil: Blanco Massani, Mariana Raquel. Instituto Nacional de Tecnología Industrial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vignolo, Graciela Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Eisenberg, Patricia. Instituto Nacional de Tecnología Industrial; Argentina. Universidad Nacional de San Martín; ArgentinaFil: Morando, Pedro Juan. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Development of an active wheat gluten film with Lactobacillus curvatus CRL705 bacteriocins and a study of its antimicrobial performance during ageing

    No full text
    Antimicrobial wheat gluten film was obtained at pilot scale by Lactobacillus curvatus CRL705 bacteriocins inclusion in the film-forming solution. Bacteriocins’ minimum inhibitory concentration for the film activation was 2133 AU cm−3 (lactocin AL705) and 267 AU cm−3 (lactocin 705). Mechanical and barrier properties as well as film ageing kinetics were not significantly affected by the addition of bacteriocins. The antimicrobial film performance during ageing was assessed. Film activity against Listeria innocua 7 and Lactobacillus plantarum CRL691 was observed over 50 days of ageing. Even when the release of bacteriocins from the film upon water contact was observed for both bacteriocins at the beginning of the ageing period, and anti-Listeria activity was delivered to the simulant up to the 15th day of ageing, film residual activity for both bacteriocins was observed over 50 days. The results confirm the potential of a gluten film doped with L. curvatus CRL705 bacteriocins as a carrier of bacteriocins to avoid Listeria and lactic acid bacterial growth, thus enhancing quality and safety in foods.Fil: Blanco Massani, Mariana Raquel. Instituto Nacional de Tecnología Industrial; ArgentinaFil: Botana, Adrián. Instituto Nacional de Tecnología Industrial; Argentina. Universidad Nacional de San Martín; ArgentinaFil: Eisenberg, Patricia. Instituto Nacional de Tecnología Industrial; Argentina. Universidad Nacional de San Martín; ArgentinaFil: Vignolo, Graciela Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; Argentin

    Strategies for Pathogen Biocontrol Using Lactic Acid Bacteria and Their Metabolites: A Focus on Meat Ecosystems and Industrial Environments

    No full text
    The globalization of trade and lifestyle ensure that the factors responsible for the emergence of diseases are more present than ever. Despite biotechnology advancements, meat-based foods are still under scrutiny because of the presence of pathogens, which causes a loss of consumer confidence and consequently a fall in demand. In this context, Lactic Acid Bacteria (LAB) as GRAS organisms offer an alternative for developing pathogen-free foods, particularly avoiding Listeria monocytogenes, with minimal processing and fewer additives while maintaining the foods’ sensorial characteristics. The use of LAB strains, enabling us to produce antimicrobial peptides (bacteriocins) in addition to lactic acid, with an impact on quality and safety during fermentation, processing, and/or storage of meat and ready-to-eat (RTE) meat products, constitutes a promising tool. A number of bacteriocin-based strategies including the use of bioprotective cultures, purified and/or semi-purified bacteriocins as well as their inclusion in varied packaging materials under different storage conditions, have been investigated. The application of bacteriocins as part of hurdle technology using non-thermal technologies was explored for the preservation of RTE meat products. Likewise, considering that food contamination with L. monocytogenes is a consequence of the post-processing manipulation of RTE foods, the role of bacteriocinogenic LAB in the control of biofilms formed on industrial surfaces is also discussed

    Characterization of a multilayer film activated with Lactobacillus curvatus CRL705 bacteriocins

    Get PDF
    BACKGROUND: Bacteriocins produced by lactic acid bacteria offer enormous promise for food safety preservation. In this study an active multilayer film obtained by the incorporation of lactocin 705 and lactocin AL705, two bacteriocins produced by Lactobacillus curvatus CRL705 with antimicrobial activity against Lactobacillus plantarum CRL691 and Listeria innocua 7, respectively, was characterized for its potential application in active packaging technology. Film activity performance at different storage conditions, bacteriocins transfer into water and sunflower oil, and film surface properties were evaluated. RESULTS: Film activity against L. innocua 7 was maintained during 2, 4 and 6 weeks at 30, 10 and 5 °C respectively. At 30 and 10 °C, activity loss against L. plantarum CRL691 was observed on the second week of storage and after the fourth week at 5 °C. Results showed no significant difference for active multilayer film contact angle and seal properties compared to the control (without bacteriocins). A decrease in lactocin 705 inhibitory activity after sunflower oil contact was observed, while lactocin AL705 remained unaffected. After water contact, film activity was retained for both bacteriocins. CONCLUSIONS: As demonstrated by antimicrobial activity and physico-mechanical properties retention, lactocin 705 and AL705 active multilayer film present potential for application in active packaging technology.Fil: Blanco Massani, Mariana Raquel. Instituto Nacional de Tecnología Industrial. Centro de Plastico; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Morando, Pedro Juan. Comision Nacional de Energia Atomica. Centro Atomico Constituyentes; Argentina. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vignolo, Graciela Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; ArgentinaFil: Eisenberg, Patricia. Instituto Nacional de Tecnología Industrial. Centro de Plastico; Argentina. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental; Argentin

    Chromosomal Sil system contributes to silver resistance in E. coli ATCC 8739

    No full text
    The rise of antibiotic resistance in pathogenic bacteria is endangering the efficacy of antibiotics, which consequently results in greater use of silver as a biocide. Chromosomal mapping of the Cus system or plasmid encoded Sil system and their relationship with silver resistance was studied for several gram-negative bacteria. However, only few reports investigated silver detoxification mediated by the Sil system integrated in Escherichia coli chromosome. Accordingly, this work aimed to study the Sil system in E. coli ATCC 8739 and to produce evidence for its role in silver resistance development. Silver resistance was induced in E. coli ATCC 8739 by stepwise passage in culture media containing increasing concentrations of AgNO₃. The published genome of E. coli ATCC 8739 contains a region showing strong homology to the Sil system genes. The role of this region in E. coli ATCC 8739 was assessed by monitoring the expression ofsilC upon silver stress, which resulted in a 350-fold increased expression. De novo sequencing of the whole genome of a silver resistant strain derived from E. coli ATCC 8739 revealed mutations in ORFs putative for SilR and CusR. The silver resistant strain (E. coli AgNO₃R) showed constitutive expression of silC which posed a cost of fitness resulting in retarded growth. Furthermore, E. coli AgNO₃R exhibited cross-resistance to ciprofloxacin and a slightly increased tolerance to ampicillin. This study demonstrates that E. coli is able to develop resistance to silver, which may pose a threat towards an effective use of silver compounds as antiseptics.ISSN:0966-0844ISSN:1572-877
    corecore