33 research outputs found

    Multiple Sklerose: Charakterisierung oligoklonaler Antikörper im Liquor von Patienten

    Get PDF

    Simultaneous identification of Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma genitalium, and Trichomonas vaginalis ‒ multicenter evaluation of the Alinity m STI assay

    Get PDF
    Abstract Objectives Accurate and rapid diagnosis of sexually transmitted infections (STIs) is essential for timely administration of appropriate treatment and reducing the spread of the disease. We examined the performance of the new Alinity m STI assay, a qualitative real-time multiplex PCR test for simultaneous identification of Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), Mycoplasma genitalium (MG), and Trichomonas vaginalis (TV) run on the fully automated Alinity m platform. Methods This international, multicenter study evaluated the accuracy, reproducibility, and clinical performance of the Alinity m STI assay compared to commonly used STI assays in a large series of patient samples encountered in clinical practice. Results The Alinity m STI assay identified accurately and precisely single and mixed pathogens from an analytical panel of specimens. The Alinity m STI assay demonstrated high overall agreement rates with comparator STI assays (99.6% for CT [n=2,127], 99.2% for NG [n=2,160], 97.1% for MG [n=491], and 99.4% for TV [n=313]). Conclusions The newly developed Alinity m STI assay accurately detects the 4 sexually transmitted target pathogens in various collection devices across clinically relevant specimen types, regardless of single or mixed infection status

    Improved molecular laboratory productivity by consolidation of testing on the new random-access analyzer Alinity m

    Get PDF
    Abstract Objectives Automated molecular analyzers have accelerated diagnosis, allowing earlier intervention and better patient follow-up. A recently developed completely automated molecular analyzer, Alinity™ m (Abbott), offers consolidated, continuous, and random-access testing that may improve molecular laboratory workflow. Methods An international, multicenter study compared laboratory workflow metrics across various routine analyzers and Alinity m utilizing assays for human immunodeficiency virus type 1 (HIV-1), hepatitis C virus (HCV), hepatitis B virus (HBV), high-risk human papillomavirus (HR HPV), and sexually transmitted infection (STI) (Chlamydia trachomatis [CT]/Neisseria gonorrhoeae [NG]/Trichomonas vaginalis [TV]/Mycoplasma genitalium [MG]). Three turnaround times (TATs) were assessed: total TAT (sample arrival to result), sample onboard TAT (sample loading and test starting to result), and processing TAT (sample aspiration to result). Results Total TAT was reduced from days with routine analyzers to hours with Alinity m, independent of requested assays. Sample onboard TATs for standard workflow using routine analyzers ranged from 7 to 32.5 h compared to 2.75–6 h for Alinity m. The mean sample onboard TAT for STAT samples on Alinity m was 2.36 h (±0.19 h). Processing TATs for Alinity m were independent of the combination of assays, with 100% of results reported within 117 min. Conclusions The consolidated, continuous, random-access workflow of Alinity m reduces TATs across various assays and is expected to improve both laboratory operational efficiency and patient care

    Multicenter clinical comparative evaluation of Alinity m HIV-1 assay performance.

    Get PDF
    Abstract Background Accurate, rapid detection of HIV-1 RNA is critical for early diagnosis, treatment decision making, and long-term management of HIV-1 infection. Objective We evaluated the diagnostic performance of the Alinity m HIV-1 assay, which uses a dual target/dual probe design against highly conserved target regions of the HIV-1 genome and is run on the fully automated Alinity m platform. Study design This was an international, multisite study that compared the diagnostic performance of the Alinity m HIV-1 assay to four commercially available HIV-1 assays routinely used in nine independent clinical laboratories. Alinity m HIV-1 assay precision, detectability, and reproducibility was compared across four study sites. Results The Alinity m HIV-1 assay produced comparable results to currently available HIV-1 assays (correlation coefficient >0.995), with an overall bias of -0.1 to 0.10 Log10 copies/mL. The Alinity m HIV-1 assay and its predecessor m2000 HIV-1 assay demonstrated comparable detection of 16 different HIV-1 subtypes (R2 = 0.956). A high level of agreement (>88 %) between all HIV-1 assays was seen near clinical decision points of 1.7 Log10 copies/mL (50 copies/mL) and 2.0 Log10 copies/mL (200 copies/mL). Alinity m HIV-1 assay precision was 0.08 and 0.21 Log10 copies/mL at VLs of 1000 and 50 copies/mL, respectively, with a high level of detectability (≥97 % hit rate) and reproducibility across sites. Conclusions The Alinity m HIV-1 assay provides comparable diagnostic accuracy to current HIV-1 assays, and when run on the Alinity m system, has the capacity to shorten the time between diagnosis and treatment

    Design and validation of a human brain endothelial microvessel-on-a-chip open microfluidic model enabling advanced optical imaging

    Get PDF
    We describe here the design and implementation of an in vitro microvascular open model system using human brain microvascular endothelial cells. The design has several advantages over other traditional closed microfluidic platforms: (1) it enables controlled unidirectional flow of media at physiological rates to support vascular function, (2) it allows for very small volumes which makes the device ideal for studies involving biotherapeutics, (3) it is amenable for multiple high resolution imaging modalities such as transmission electron microscopy (TEM), 3D live fluorescence imaging using traditional spinning disk confocal microscopy, and advanced lattice light sheet microscopy (LLSM). Importantly, we miniaturized the design, so it can fit within the physical constraints of LLSM, with the objective to study physiology in live cells at subcellular level. We validated barrier function of our brain microvessel-on-a-chip by measuring permeability of fluorescent dextran and a human monoclonal antibody. One potential application is to investigate mechanisms of transcytosis across the brain microvessel-like barrier of fluorescently-tagged biologics, viruses or nanoparticles

    Pre-treatment and extraction techniques for recovery of added value compounds from wastes throughout the agri-food chain

    Full text link

    Pre-treatment and extraction techniques for recovery of added value compounds from wastes throughout the agri-food chain

    Get PDF
    The enormous quantity of food wastes discarded annually force to look for alternatives for this interesting feedstock. Thus, food bio-waste valorisation is one of the imperatives of the nowadays society. This review is the most comprehensive overview of currently existing technologies and processes in this field. It tackles classical and innovative physical, physico-chemical and chemical methods of food waste pre-treatment and extraction for recovery of added value compounds and detection by modern technologies and are an outcome of the COST Action EUBIS, TD1203 Food Waste Valorisation for Sustainable Chemicals, Materials and Fuels

    Sphingosine 1 Phosphate at the Blood Brain Barrier: Can the Modulation of S1P Receptor 1 Influence the Response of Endothelial Cells and Astrocytes to Inflammatory Stimuli?

    No full text
    The ability of the Blood Brain Barrier (BBB) to maintain proper barrier functions, keeping an optimal environment for central nervous system (CNS) activity and regulating leukocytes' access, can be affected in CNS diseases. Endothelial cells and astrocytes are the principal BBB cellular constituents and their interaction is essential to maintain its function. Both endothelial cells and astrocytes express the receptors for the bioactive sphingolipid S1P. Fingolimod, an immune modulatory drug whose structure is similar to S1P, has been approved for treatment in multiple sclerosis (MS): fingolimod reduces the rate of MS relapses by preventing leukocyte egress from the lymph nodes. Here, we examined the ability of S1P and fingolimod to act on the BBB, using an in vitro co-culture model that allowed us to investigate the effects of S1P on endothelial cells, astrocytes, and interactions between the two. Acting selectively on endothelial cells, S1P receptor signaling reduced cell death induced by inflammatory cytokines. When acting on astrocytes, fingolimod treatment induced the release of a factor, granulocyte macrophage colony-stimulating factor (GM-CSF) that reduced the effects of cytokines on endothelium. In an in vitro BBB model incorporating shear stress, S1P receptor modulation reduced leukocyte migration across the endothelial barrier, indicating a novel mechanism that might contribute to fingolimod efficacy in MS treatment

    Deletion of a stay-green gene associates with adaptive selection in Brassica napus

    No full text
    Chlorophyll levels provide important information about plant growth and physiological plasticity in response to changing environments. The stay-green gene NON-YELLOWING 1 (NYE1) is believed to regulate chlorophyll degradation during senescence, concomitantly affecting the disassembly of the light-harvesting complex and hence indirectly influencing photosynthesis. We identified Brassica napus accessions carrying an NYE1 deletion associated with increased chlorophyll content, and with upregulated expression of light-harvesting complex and photosynthetic reaction center (PSI and PSII) genes. Comparative analysis of the seed oil content of accessions with related genetic backgrounds revealed that the B. napus NYE1 gene deletion (bnnye1) affected oil accumulation, and linkage disequilibrium signatures suggested that the locus has been subject to artificial selection by breeding in oilseed B. napus forms. Comparative analysis of haplotype diversity groups (haplogroups) between three different ecotypes of the allopolyploid B. napus and its A-subgenome diploid progenitor, Brassica rapa, indicated that introgression of the bnnye1 deletion from Asian B. rapa into winter-type B. napus may have simultaneously improved its adaptation to cooler environments experienced by autumn-sown rapeseed
    corecore