209 research outputs found
Sprinklers: A Randomized Variable-Size Striping Approach to Reordering-Free Load-Balanced Switching
Internet traffic continues to grow exponentially, calling for switches that
can scale well in both size and speed. While load-balanced switches can achieve
such scalability, they suffer from a fundamental packet reordering problem.
Existing proposals either suffer from poor worst-case packet delays or require
sophisticated matching mechanisms. In this paper, we propose a new family of
stable load-balanced switches called "Sprinklers" that has comparable
implementation cost and performance as the baseline load-balanced switch, but
yet can guarantee packet ordering. The main idea is to force all packets within
the same virtual output queue (VOQ) to traverse the same "fat path" through the
switch, so that packet reordering cannot occur. At the core of Sprinklers are
two key innovations: a randomized way to determine the "fat path" for each VOQ,
and a way to determine its "fatness" roughly in proportion to the rate of the
VOQ. These innovations enable Sprinklers to achieve near-perfect load-balancing
under arbitrary admissible traffic. Proving this property rigorously using
novel worst-case large deviation techniques is another key contribution of this
work
Influence of the pseudogap on the superconductivity-induced phonon renormalization in high-T superconductors
We investigate the influence of a d-density wave (DDW) gap on the
superconductivity-induced renormalization of phonon frequency and linewidth.
The results are discussed with respect to Raman and inelastic neutron
scattering experiments. It turns out that the DDW gap can enhance the range of
frequencies for phonon softening depending on the underlying band
structure. Moreover we show that an anisotropic 'd-wave' pseudogap can also
contribute to the q-dependent linewidth broadening of the 340cm phonon
in YBaCuO.Comment: 4 page
Typographic design of outdoor signage, restaurant authenticity, and consumers’ willingness to dine: extending semiotic theory
Purpose Restaurants’ outdoor signage plays an irreplaceable role in attracting potential diners, as it conveys important functional and symbolic meanings of the businesses. The purpose of this study is to investigate the effect of typographic design elements of outdoor signage on consumers’ perceptions of authenticity. This study also tests the linkage between authenticity and willingness to dine, as well as the moderating effect of frequency of dining in ethnic restaurants on the relationship.
Design/methodology/approach Using a 2 (simplified vs traditional Chinese characters) × 2 (calligraphy vs computer font) × 2 (vertical vs horizontal text flow) between-subject design, the authors did two experiments with 786 Chinese diners. Restaurant authenticity and willingness to dine are dependent variables, and openness to ethnic cuisine is the control variable.
Findings Display characters and text flow significantly affect restaurant authenticity. Furthermore, the results of this study demonstrate that display characters interact with typeface to influence restaurant authenticity. Consumers’ perceived authenticity significantly increases their willingness to dine. The frequency of dining in ethnic restaurants moderates the relationship between restaurant authenticity and willingness to dine.
Practical implications Ethnic restaurateurs should pay attention to the outdoor signage design, as it affects potential consumers’ authenticity perceptions. Specifically, in Mainland China, traditional Chinese characters and vertical text direction increase potential consumers’ authenticity perceptions.
Originality/value This study extends the semiotic theory and applies the cue–judgment–behavior model in the hospitality literature. This study also provides new understanding of authenticity by identifying the influence of typographic design on authenticity, which confirms the semiotic theory that certain semiotic cues affect consumers’ judgments
Insertable inductively coupled volumetric coils for MR microscopy in a human 7T MR system
PURPOSE: To demonstrate the capability of insertable inductively coupled volumetric coils for MR microscopy in a human 7T MR system. METHODS: Insertable inductively coupled volume coils with diameters of 26 and 64 mm (D26 and D64 coils) targeted for monkey and mouse brain specimen sizes were designed and fabricated. These coils were placed inside the imaging volume of a transmit/receive knee coil without wired connections to the main system. Signal-to-noise ratio (SNR) evaluations were conducted with and without the insertable coils, and the g-factor maps of parallel imaging (PI) were also calculated for the D64 coil. Brain specimens were imaged using 3D T 2 ∗ -weighted images with spatial resolution of isotropic 50 and 160 μm using D26 and D64 coils, respectively. RESULTS: Relative average (SD) SNRs compared with knee coil alone were 12.54 (0.30) and 2.37 (0.05) at the center for the D26 and D64 coils, respectively. The mean g-factors of PI with the D64 coil for the factor of 2 were less than 1.1 in the left-right and anterior-posterior directions, and around 1.5 in the superior-inferior direction or when the PI factor of 3 was used. Acceleration in two directions showed lower g-factors but suffered from intrinsic low SNR. Representative T 2 ∗ -weighted images of the specimen showed structural details. CONCLUSION: Inductively coupled small diameter coils insertable to the knee coil demonstrated high SNR and modest PI capability. The concept was successfully used to visualize fine structures of the brain specimen. The insertable coils are easy to handle and enable MR microscopy in a human whole-body 7T MRI system
Vimentin is a novel AKT1 target mediating motility and invasion.
The PI3K/AKT signaling pathway is aberrant in a wide variety of cancers. Downstream effectors of AKT are involved in survival, growth and metabolic-related pathways. In contrast, contradictory data relating to AKT effects on cell motility and invasion, crucial prometastatic processes, have been reported pointing to a potential cell type and isoform type-specific AKT-driven function. By implication, study of AKT signaling should optimally be conducted in an appropriate intracellular environment. Prognosis in soft-tissue sarcoma (STS), the aggressive malignancies of mesenchymal origin, is poor, reflecting our modest ability to control metastasis, an effort hampered by lack of insight into molecular mechanisms driving STS progression and dissemination. We examined the impact of the cancer progression-relevant AKT pathway on the mesenchymal tumor cell internal milieu. We demonstrate that AKT1 activation induces STS cell motility and invasiveness at least partially through a novel interaction with the intermediate filament vimentin (Vim). The binding of AKT (tail region) to Vim (head region) results in Vim Ser39 phosphorylation enhancing the ability of Vim to induce motility and invasion while protecting Vim from caspase-induced proteolysis. Moreover, vimentin phosphorylation was shown to enhance tumor and metastasis growth in vivo. Insights into this mesenchymal-related molecular mechanism may facilitate the development of critically lacking therapeutic options for these devastating malignancies
Is the wear coefficient dependent upon slip amplitude in fretting?: Vingsbo and Söderberg revisited
More than 25 years ago, Vingsbo and Söderberg published a seminal paper regarding the mapping of behaviour in fretting contacts (O. Vingsbo, S. Söderberg, On fretting maps, Wear, 126 (1988) 131–147). In this paper, it was proposed that in the gross-slip fretting regime, the wear coefficient increased by between one and two orders of magnitude as the fretting displacement amplitude increased from around 20 µm to 300 µm (defined as the limits of the gross-slip regime).
Since the publication of this paper, there have been many papers published in the literature regarding fretting in the gross-sliding regime where such a strong dependence of wear coefficient upon fretting displacement has not been observed, with instead, the wear coefficient being shown to be almost independent of fretting amplitude. Indeed, many researchers have demonstrated that there is a good correlation between wear volume and frictional energy dissipated in the contact for many material combinations, with the additional insight that a threshold in energy dissipated in the contact exists, below which no wear is observed (experimental data relating to fretting of a high strength steel is presented in the current paper which supports this concept).
It is argued that in deriving a wear coefficient in fretting, there are two key considerations which have not always been addressed: (i) the far-field displacement amplitude is not an adequate substitute for the slip amplitude (the former is the sum of the latter together with any elastic deformation in the system between the contact and the point at which the displacement is measured); and (ii) there is a threshold in the fretting duration, below which no wear occurs and above which the rate of increase in wear volume with increasing duration is constant (this constant may be termed the wear coefficient, ktrue). Not addressing these two issues results in the derivation of a nominal wear coefficient (knominal) which is always less than ktrue. A simple analysis is presented which indicates that
knominal / ktrue = 1 - A - B
where A is associated with erroneously utilising the far field displacement amplitude in place of the contact slip amplitude in the calculation of the wear coefficient and B is associated with the failure to recognise that there is a threshold in fretting duration below which no wear occurs.
A and B are shown to depend upon the tractional force required to initiate sliding (itself dependent upon the applied load and coefficient of friction), the system stiffness, the applied displacement amplitude, the threshold fretting duration below which no wear occurs and the number of fretting cycles in the test. Using typical values of these parameters, the ratio of knominal to ktrue has been shown to be strongly dependent upon the applied displacement amplitude over the range addressed by Vingsbo and Söderberg (with the ratio rapidly decreasing by an order of magnitude over this range). As such, it is argued that ktrue shows no strong dependence on slip amplitude in fretting, and that the strong dependence of knominal upon displacement amplitude presented by Vingsbo and Söderberg does not imply a change in ktrue as is often inferred.
The routine recording of force–displacement loops in fretting is a major experimental advancement which has taken place since the publication of the paper by Vingsbo and Söderberg. It is argued that this technique must be routinely used to allow the correct interpretation of wear data in terms of the actual slip amplitude (or energy dissipated); moreover, a range of conditions should be experimentally examined to allow the threshold fretting duration below which no wear has occurred to be evaluated and its significance assessed
Prevention and early detection of prostate cancer
This Review was sponsored and funded by the International Society of Cancer Prevention (ISCaP), the European Association of Urology (EAU), the National Cancer Institute, USA (NCI) (grant number 1R13CA171707-01), Prostate Cancer UK, Cancer Research UK (CRUK) (grant number C569/A16477), and the Association for International Cancer Research (AICR
LLMs as Workers in Human-Computational Algorithms? Replicating Crowdsourcing Pipelines with LLMs
LLMs have shown promise in replicating human-like behavior in crowdsourcing
tasks that were previously thought to be exclusive to human abilities. However,
current efforts focus mainly on simple atomic tasks. We explore whether LLMs
can replicate more complex crowdsourcing pipelines. We find that modern LLMs
can simulate some of crowdworkers' abilities in these "human computation
algorithms," but the level of success is variable and influenced by requesters'
understanding of LLM capabilities, the specific skills required for sub-tasks,
and the optimal interaction modality for performing these sub-tasks. We reflect
on human and LLMs' different sensitivities to instructions, stress the
importance of enabling human-facing safeguards for LLMs, and discuss the
potential of training humans and LLMs with complementary skill sets. Crucially,
we show that replicating crowdsourcing pipelines offers a valuable platform to
investigate (1) the relative strengths of LLMs on different tasks (by
cross-comparing their performances on sub-tasks) and (2) LLMs' potential in
complex tasks, where they can complete part of the tasks while leaving others
to humans
Simulation Modelling in Ophthalmology : Application to Cost Effectiveness of Ranibizumab and Aflibercept for the Treatment of Wet Age-Related Macular Degeneration in the United Kingdom
Previously developed models in ophthalmology have generally used a Markovian structure. There are a number of limitations with this approach, most notably the ability to base patient outcomes on best-corrected visual acuity (BCVA) in both eyes, which may be overcome using a different modelling structure. Simulation modelling allows for this to be modelled more precisely, and therefore may provide more accurate and relevant estimates of the cost effectiveness of ophthalmology interventions
- …