9 research outputs found

    Precision measurement of the mass difference between light nuclei and anti-nuclei

    No full text
    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons (), and 3 He and nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 €‰TeV. Our direct measurement of the mass-over-charge differences confirms CPT invariance to an unprecedented precision in the sector of light nuclei. This fundamental symmetry of nature, which exchanges particles with anti-particles, implies that all physics laws are the same under the simultaneous reversal of charge(s) (charge conjugation C), reflection of spatial coordinates (parity transformation P) and time inversion (T). © 2015 Macmillan Publishers Limited. All rights reserved

    Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions

    No full text
    At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark-gluon plasma (QGP). Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed. Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions, is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions, but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton-proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with the p-Pb collision results, indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed

    Suppression of Upsilon(1S) at forward rapidity in Pb-Pb collisions at root s(NN)=2.76 TeV

    Get PDF
    We report on the measurement of the inclusive Upsilon(1S) production in Pb-Pb collisions at root s(NN) = 2.76 TeV carried out at forward rapidity (2.5 < y < 4) and down to zero transverse momentum using its mu(+)mu(-) decay channel with the ALICE detector at the Large Hadron Collider. Astrong suppression of the inclusive Upsilon(1S) yield is observed with respect to pp collisions scaled by the number of independent nucleo-nnucleon collisions. The nuclear modification factor, for events in the 0-90% centrality range, amounts to 0.30 +/- 0.05(stat) +/- 0.04(syst). The observed Upsilon(1S) suppression tends to increase with the centrality of the collision and seems more pronounced than in corresponding mid-rapidity measurements. Our results are compared with model calculations, which are found to underestimate the measured suppression and fail to reproduce its rapidity dependence. (C) 2014 The Authors. Published by Elsevier B. V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP(3)

    Beauty production in pp collisions at s=2.76 TeV measured via semi-electronic decays

    No full text
    The ALICE Collaboration at the LHC reports measurement of the inclusive production cross section of electrons from semi-leptonic decays of beauty hadrons with rapidity |y|<0.8 and transverse momentum 1<pT<10 GeV/c, in pp collisions at s=2.76 TeV. Electrons not originating from semi-electronic decay of beauty hadrons are suppressed using the impact parameter of the corresponding tracks. The production cross section of beauty decay electrons is compared to the result obtained with an alternative method which uses the distribution of the azimuthal angle between heavy-flavour decay electrons and charged hadrons. Perturbative QCD predictions agree with the measured cross section within the experimental and theoretical uncertainties. The integrated visible cross section, σb→e=3.47±0.40(stat)-1.33+1.12(sys)±0.07(norm) μb, was extrapolated to full phase space using Fixed Order plus Next-to-Leading Log (FONLL) calculations to obtain the total bb production cross section, σbb=130±15.1(stat)-49.8+42.1(sys)-3.1+3.4(extr)±2.5(norm)±4.4(BR) μb

    Upgrade of the ALICE Experiment: Letter of Intent

    No full text
    The long term goal of the ALICE experiment is to provide a precise characterization of the high-density, high-temperature phase of strongly interacting matter. To achieve this goal, high-statistics precision measurement are required. The general upgrade strategy for the ALICE detector is conceived to deal with this challenge with expected Pb-Pb interaction rates of up to 50 kHz aiming at an integrated luminosity of the order of 10 nb^-1. With the proposed timeline, starting the high-rate operation progressively after 2018 shutdown, the goals set up in our upgrade plans should be achieved collecting data until mid-2020's. In this document we present the main physics motivations for running the LHC with heavy ions at high luminosities and discuss the modifications and replacements needed in the ALICE detectors, the online systems and offline system. The schedule, cost estimate and organization of the upgrade programme are presented as well.ALICE (A Large Ion Collider Experiment) is studying the physics of strongly interacting matter, and in particular the properties of the Quark–Gluon Plasma (QGP), using proton–proton, proton–nucleus and nucleus–nucleus collisions at the CERN LHC (Large Hadron Collider). The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018–2019. These plans are presented in the ALICE Upgrade Letter of Intent, submitted to the LHCC (LHC experiments Committee) in September 2012. In order to fully exploit the physics reach of the LHC in this field, high-precision measurements of the heavy-flavour production, quarkonia, direct real and virtual photons, and jets are necessary. This will be achieved by an increase of the LHC Pb–Pb instant luminosity up to 6×1027 cm−2s−1 and running the ALICE detector with the continuous readout at the 50 kHz event rate. The physics performance accessible with the upgraded detector, together with the main detector modifications, are presented

    Precision measurement of the mass difference between light nuclei and anti-nuclei

    No full text
    The measurement of the mass di erences for systems bound by the strong force has reached a very high precision with protons and anti-protons1,2. The extension of such measure- ment from (anti-)baryons to (anti-)nuclei allows one to probe any di erence in the interactions between nucleons and anti- nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by e ective theories3, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the di erence between the ratios ofthemassandchargeofdeuterons(d)andanti-deuterons(d ̄), and 3He and 3He nuclei carried out with the ALICE (A Large Ion Collider Experiment)4 detector in Pb–Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge di erences confirms CPT invariance to an unprecedented precision in the sector of light nuclei5,6. This fundamental symmetry of nature, which exchanges particles with anti-particles, implies that all physics laws are the same under the simultaneous reversal of charge(s) (charge conjugation C), reflection of spatial coordinates (parity transformation P) and time inversion (T)

    Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions

    No full text
    At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark-gluon plasma (QGP). Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed. Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions, is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions, but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton-proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with the p-Pb collision results, indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved

    Charged-particle multiplicity measurement in proton-proton collisions at root s=7 TeV with ALICE at LHC

    Get PDF
    The pseudorapidity density and multiplicity distribution of charged particles produced in proton-proton collisions at the LHC, at a centre-of-mass energy root s = 7 TeV, were measured in the central pseudorapidity region vertical bar eta vertical bar < 1. Comparisons are made with previous measurements at root s = 0.9 TeV and 2.36 TeV. At root s = 7 TeV, for events with at least one charged particle in |eta vertical bar| < 1, we obtain dN(ch)/d eta = 6.01 +/- 0.01(stat.)(-0.12)(+0.20) (syst.). This corresponds to an increase of 57.6%+/-0.4%(stat.)(-1.8%)(+3.6) (syst.) relative to collisions at 0.9 TeV, significantly higher than calculations from commonly used models. The multiplicity distribution at 7 TeV is described fairly well by the negative binomial distribution

    First measurement of the Lambda-Csi interaction in proton-proton collisions at the LHC

    No full text
    The first experimental information on the strong interaction between Lambda and Csi-strange baryons is presented in this Letter. The correlation function of A-E-and A-E+ pairs produced in high-multiplicity proton-proton (pp) collisions at ,/s = 13 TeV at the LHC is measured as a function of the relative momentum of the pair. The femtoscopy method is used to calculate the correlation function, which is then compared with theoretical expectations obtained using a meson exchange model, chiral effective field theory, and Lattice QCD calculations close to the physical point. Data support predictions of small scattering parameters while discarding versions with large ones, thus suggesting a weak A-E- interaction. The limited statistical significance of the data does not yet allow one to constrain the effects of coupled channels like E-E and N-S2
    corecore