5 research outputs found

    Impact of ROS-Induced Damage of TCA Cycle Enzymes on Metabolism and Virulence of Salmonella enterica serovar Typhimurium

    Get PDF
    Noster J, Persicke M, Chao T-C, et al. Impact of ROS-Induced Damage of TCA Cycle Enzymes on Metabolism and Virulence of Salmonella enterica serovar Typhimurium. FRONTIERS IN MICROBIOLOGY. 2019;10: 762.Salmonella enterica serovar Typhimurium (STM) is exposed to reactive oxygen species (ROS) originating from aerobic respiration, antibiotic treatment, and the oxidative burst occurring inside the Salmonella-containing vacuole (SCV) within host cells. ROS damage cellular compounds, thereby impairing bacterial viability and inducing cell death. Proteins containing iron-sulfur (Fe-S) clusters are particularly sensitive and become non-functional upon oxidation. Comprising five enzymes with Fe-S clusters, the TCA cycle is a pathway most sensitive toward ROS. To test the impact of ROS-mediated metabolic perturbations on bacterial physiology, we analyzed the proteomic and metabolic profile of STM deficient in both cytosolic superoxide dismutases (Delta sodAB). Incapable of detoxifying superoxide anions (SOA), endogenously generated SOA accumulate during growth. Delta sodAB showed reduced abundance of aconitases, leading to a metabolic profile similar to that of an aconitase-deficient strain (Delta acnAB). Furthermore, we determined a decreased expression of acnA in STM Delta sodAB. While intracellular proliferation in RAW264.7 macrophages and survival of methyl viologen treatment were not reduced for STM Delta acnAB, proteomic profiling revealed enhanced stress response. We conclude that ROS-mediated reduced expression and damage of aconitase does not impair bacterial viability or virulence, but might increase ROS amounts in STM, which reinforces the bactericidal effects of antibiotic treatment and immune responses of the host

    NETosis in Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the progressive deterioration of cognitive functions. Its neuropathological features include amyloid-\u3b2 (A\u3b2) accumulation, the formation of neurofibrillary tangles, and the loss of neurons and synapses. Neuroinflammation is a well-established feature of AD pathogenesis, and a better understanding of its mechanisms could facilitate the development of new therapeutic approaches. Recent studies in transgenic mouse models of AD have shown that neutrophils adhere to blood vessels and migrate inside the parenchyma. Moreover, studies in human AD subjects have also shown that neutrophils adhere and spread inside brain vessels and invade the parenchyma, suggesting these cells play a role in AD pathogenesis. Indeed, neutrophil depletion and the therapeutic inhibition of neutrophil trafficking, achieved by blocking LFA-1 integrin in AD mouse models, significantly reduced memory loss and the neuropathological features of AD. We observed that neutrophils release neutrophil extracellular traps (NETs) inside blood vessels and in the parenchyma of AD mice, potentially harming the blood-brain barrier and neural cells. Furthermore, confocal microscopy confirmed the presence of NETs inside the cortical vessels and parenchyma of subjects with AD, providing more evidence that neutrophils and NETs play a role in AD-related tissue destruction. The discovery of NETs inside the AD brain suggests that these formations may exacerbate neuro-inflammatory processes, promoting vascular and parenchymal damage during AD. The inhibition of NET formation has achieved therapeutic benefits in several models of chronic inflammatory diseases, including autoimmune diseases affecting the brain. Therefore, the targeting of NETs may delay AD pathogenesis and offer a novel approach for the treatment of this increasingly prevalent disease

    MGMT promoter methylation in triple negative breast cancer of the GeparSixto trial

    No full text
    Triple-negative breast cancer (TNBC) is typically treated with chemotherapeutic agents, including carboplatin (Cb), an DNA platinating agent. The O6-methylguanine-DNA-methyltransferase gene (MGMT) encodes for the protein O6-alkylguanine-DNA-alkyltransferase (MGMT protein). MGMT protein is involved in DNA repair mechanisms to remove mutagenic and cytotoxic adducts from O6-guanine in DNA. In glioblastoma multiforme, MGMT methylation status is a predictive biomarker for increased response to temozolomide therapy. It has been suggested, that MGMT protein may have relevance for cellular adaptation and could have an influence on resistance to carboplatin therapy. We investigated the influence of MGMT promoter methylation on pathologic complete response and survival of patients with TNBC treated in the neoadjuvant GeparSixto trial. In 174 of 210 available TNBC tumors a valid MGMT promoter methylation status was determined by pyrosequencing of 5 CpG islands. In 21.8%, we detected a mean MGMT promoter methylation >10%. Overall, MGMT promoter methylation was not significantly associated with pathological complete response (pCR) rate. After stratification for the two therapy arms with and without Cb no statistically significant differences in therapy response rates between the two MGMT promoter methylation groups could be observed. Our results show that different MGMT promoter methylation status is not related to different chemotherapy response rates in the TNBC setting in GeparSixto
    corecore