12 research outputs found

    Hoarding of pulsed resources : temporal variations in egg-caching by arctic fox

    Full text link
    Resource pulses are common in various ecosystems and often have large impacts on ecosystem functioning. Many animals hoard food during resource pulses, yet how this behaviour affects pulse diffusion through trophic levels is poorly known because of a lack of individual-based studies. Our objective was to examine how the hoarding behaviour of arctic foxes (Alopex lagopus) preying on a seasonal pulsed resource (goose eggs) was affected by annual and seasonal changes in resource availability. We monitored foraging behaviour of foxes in a greater snow goose (Chen caerulescens atlanticus) colony during 8 nesting seasons that covered 2 lemming cycles. The number of goose eggs taken and cached per hour by foxes declined 6-fold from laying to hatching, while the proportion of eggs cached remained constant. In contrast, the proportion of eggs cached by foxes fluctuated in response to the annual lemming cycle independently of the seasonal pulse of goose eggs. Foxes cached the majority of eggs taken (> 90%) when lemming abundance was high or moderate but only 40% during the low phase of the cycle. This likely occurred because foxes consumed a greater proportion of goose eggs to fulfill their energy requirement at low lemming abundance. Our study clearly illustrates a behavioural mechanism that extends the energetic benefits of a resource pulse. The hoarding behaviour of the main predator enhances the allochthonous nutrients input brought by migrating birds from the south into the arctic terrestrial ecosystem. This could increase average predator density and promote indirect interactions among prey

    No selection on immunological markers in response to a highly virulent pathogen in an Arctic breeding bird

    Get PDF
    In natural populations, epidemics provide opportunities to look for intense natural selection on genes coding for life history and immune or other physiological traits. If the populations being considered are of management or conservation concern, then identifying the traits under selection (or ‘markers’) might provide insights into possible intervention strategies during epidemics. We assessed potential for selection on multiple immune and life history traits of Arctic breeding common eiders (Somateria mollissima) during annual avian cholera outbreaks (summers of 2006, 2007 & 2008). We measured prelaying body condition, immune traits, and subsequent reproductive investment (i.e., clutch size) and survival of female common eiders and whether they were infected with Pasteurella multocida, the causative agent of avian cholera. We found no clear and consistent evidence of directional selection on immune traits; however, infected birds had higher levels of haptoglobin than uninfected birds. Also, females that laid larger clutches had slightly lower immune responses during the prelaying period reflecting possible downregulation of the immune system to support higher costs of reproduction. This supports a recent study indicating that birds investing in larger clutches were more likely to die from avian cholera and points to a possible management option to maximize female survival during outbreaks

    Flower-visitor communities of an arcto-alpine plant-Global patterns in species richness, phylogenetic diversity and ecological functioning

    Get PDF
    Pollination is an ecosystem function of global importance. Yet, who visits the flower of specific plants, how the composition of these visitors varies in space and time and how such variation translates into pollination services are hard to establish. The use of DNA barcodes allows us to address ecological patterns involving thousands of taxa that are difficult to identify. To clarify the regional variation in the visitor community of a widespread flower resource, we compared the composition of the arthropod community visiting species in the genus Dryas (mountain avens, family Rosaceae), throughout Arctic and high-alpine areas. At each of 15 sites, we sampled Dryas visitors with 100 sticky flower mimics and identified specimens to Barcode Index Numbers (BINs) using a partial sequence of the mitochondrial COI gene. As a measure of ecosystem functioning, we quantified variation in the seed set of Dryas. To test for an association between phylogenetic and functional diversity, we characterized the structure of local visitor communities with both taxonomic and phylogenetic descriptors. In total, we detected 1,360 different BINs, dominated by Diptera and Hymenoptera. The richness of visitors at each site appeared to be driven by local temperature and precipitation. Phylogeographic structure seemed reflective of geological history and mirrored trans-Arctic patterns detected in plants. Seed set success varied widely among sites, with little variation attributable to pollinator species richness. This pattern suggests idiosyncratic associations, with function dominated by few and potentially different taxa at each site. Taken together, our findings illustrate the role of post-glacial history in the assembly of flower-visitor communities in the Arctic and offer insights for understanding how diversity translates into ecosystem functioning.Peer reviewe

    Fine-scale spatial segregation in a pelagic seabird driven by differential use of tidewater glacier fronts

    Get PDF
    In colonially breeding marine predators, individual movements and colonial segregation are influenced by seascape characteristics. Tidewater glacier fronts are important features of the Arctic seascape and are often described as foraging hotspots. Albeit their documented importance for wildlife, little is known about their structuring effect on Arctic predator movements and space use. In this study, we tested the hypothesis that tidewater glacier fronts can influence marine bird foraging patterns and drive spatial segregation among adjacent colonies. We analysed movements of black-legged kittiwakes (Rissa tridactyla) in a glacial fjord by tracking breeding individuals from five colonies. Although breeding kittiwakes were observed to travel up to ca. 280 km from the colony, individuals were more likely to use glacier fronts located closer to their colony and rarely used glacier fronts located farther away than 18 km. Such variation in the use of glacier fronts created fine-scale spatial segregation among the four closest (ca. 7 km distance on average) kittiwake colonies. Overall, our results support the hypothesis that spatially predictable foraging patches like glacier fronts can have strong structuring effects on predator movements and can modulate the magnitude of intercolonial spatial segregation in central-place foragers

    Annual and Seasonal Variation in Shorebird Abundance in the St. Lawrence River Estuary during Fall Migration

    Get PDF
    Many north American shorebird populations are declining. it is therefore urgent to identify major sites used during their annual cycle to achieve effective conservation measures. our objective was to expand some aspects of the knowledge base needed to assess the ecological value of the St. Lawrence River Estuary for shorebird conservation. Here, we present the results of the most intensive shorebird survey ever conducted in the St. Lawrence River Estuary during fall migration. Surveys were conducted between St-Jean-Port-Joli and St-Simon-sur-Mer, Quebec, Canada, in 2011 and 2012, from late June/early July through late november, corresponding to the migration period of all species potentially present in the study area. The Semipalmated Sandpiper (Calidris pusilla) was one of the two most abundant species during both years of our study (most abundant species, followed by Dunlin [Calidris alpina] and Black-bellied Plover [Pluvialis squatarola] in 2011; second to Blackbellied Plover in 2012). Considering the entire shorebird community, abundance of individuals peaked in early September. Peak abundance occurred earlier for adults than for juveniles. For most species, juveniles largely outnumbered adults. Juveniles were relatively less abundant in 2012 than in 2011. This reflected a general trend observed in northeastern north America between those years, suggesting a lower breeding success in 2012. Given its importance as a staging site for juvenile birds (study area used annually by up to a few hundred thousand shorebirds) and therein, its conservation value, we recommend that the St. Lawrence River Estuary should be included within the Western Hemisphere Shorebird Reserve network

    Hennin-Fattening_Rate_and_Clutch_Size_in_Common_Eider

    No full text
    These data were collected from 2003-2014 at East Bay Island, Southampton Island, Nunavut, Canada. These are data from pre-recruiting, wild-living female common eiders with metrics collected at arrival on the breeding grounds, reproductive outputs, and physiological fattening measured in the lab

    Data from: Higher rates of pre‐breeding condition gain positively impacts clutch size: a mechanistic test of the condition‐dependent individual optimization model

    No full text
    1. A combination of timing of and body condition (i.e., mass) at arrival on the breeding grounds interact to influence the optimal combination of the timing of reproduction and clutch size in migratory species. This relationship has been formalized by Rowe et al. in a condition-dependent individual optimization model (American Naturalist, 1994, 143, 689-722), which has been empirically tested and validated in avian species with a capital-based breeding strategy. 2. This model makes a key, but currently untested prediction; that variation in the rate of body condition gain will shift the optimal combination of laying date and clutch size. This prediction is essential because it implies that individuals can compensate for the challenges associated with late timing of arrival or poor body condition at arrival on the breeding grounds through adjustment of their life history investment decisions, in an attempt to maximize fitness. 3. Using an 11-year data set in arctic-nesting common eiders (Somateria mollissima), quantification of fattening rates using plasma triglycerides (an energetic metabolite), and a path analysis approach, we test this prediction of this optimization model; controlling for arrival date and body condition, females that fatten more quickly will adjust the optimal combination of lay date and clutch size, in favour of a larger clutch size. 4. As predicted, females fattening at higher rates initiated clutches earlier and produced larger clutch sizes, indicating that fattening rate is an important factor in addition to arrival date and body condition in predicting individual variation in reproductive investment. However, there was no direct effect of fattening rate on clutch size (i.e., birds laying on the same date had similar clutch sizes, independent of their fattening rate). Instead, fattening rate indirectly affected clutch size via earlier lay dates, thus not supporting the original predictions of the optimization model. 5. Our results demonstrate that variation in the rate of condition gain allows individuals to shift flexibly along the seasonal decline in clutch size to presumably optimize the combination of laying date and clutch size

    Feeding at the front line: interannual variation in the use of glacier fronts by foraging black-legged kittiwakes

    Get PDF
    Tidewater glacier fronts can represent important foraging areas for Arctic predators. Their ecological importance is likely to change in a warmer Arctic. Their profitability and use by consumers are expected to vary in time, but the underlying mechanisms driving such variation remain poorly known. The subglacial plume, originating from meltwater discharge, is responsible for the entrainment and transport of zooplankton to the surface, making them more readily available for surface-feeding seabirds. Both discharge and zooplankton abundance are known to fluctuate in time and are thus expected to modulate the foraging profitability of glacier fronts. This study tested the predictions that annual use of glacier fronts by black-legged kittiwakes Rissa tridactyla is positively related to the average glacier discharge and prey biomass in the fjord. To do this, we combined a multiyear dataset of environmental drivers and GPS tracks of birds in Kongsfjorden, Svalbard. Our results confirmed the interannual variation in the use of glacier fronts by kittiwakes; however, contrary to our predictions, these variations were negatively correlated to both glacier discharge and zooplankton abundance. These apparent negative relationships likely reflect non-linear effects and complex interactions between local and regional environmental factors that affect the relative profitability of glacier fronts as foraging areas. Despite their high spatial predictability, glacier fronts may not offer consistent foraging opportunities for marine predators over time
    corecore