239 research outputs found

    Diseño de un modelo para evaluar la accesibilidad web y validación sobre un ranking de las universidades españolas

    Get PDF
    This paper presents a study of the websites of the Spanish universities, and the design of a quantitative metric for measuring their level of accessibility, in order to establish a ranking that can be used for evaluate and compare them. This study considered the website of 79 Spanish universities; they have been analyzed by measuring some web accessibility-related indicators, such as accessibility and standards guidelines compliance, compatibility, usability errors, etc. With the obtained results and the proposed metric, we have developed a ranking of universities that measure their web accessibility quality. The main goal of this paper is presenting the results of this study.Se presenta un estudio sobre los sitios Web de las universidades españolas, y el diseño de una medida cuantitativa para medir su nivel de accesibilidad, con objeto de establecer un ranking que permita evaluarlas y compararlas entre sí. En este estudio se han considerado 79 universidades españolas, cuyos sitios web institucionales se han analizado en profundidad midiendo diversos indicadores relacionados con la accesibilidad web, tales como la satisfacción de estándares y directrices de accesibilidad, la compatibilidad con distintos navegadores, errores de usabilidad, etc. A partir de los resultados obtenidos y con la métrica propuesta, se ha elaborado un ranking de universidades que pretende medir la calidad de sus sitios institucionales en cuanto a accesibilidad web. El objetivo del presente trabajo es presentar los resultados obtenidos a partir de dicho estudio

    El Canal de Cultura Contemporánea de las Universidades Públicas de Andalucía: mejoras y experiencias

    Get PDF
    The Contemporary Culture Channel of Andalusian Public Universities (CaCoCu) is a web platform with cultural contents, that basically contains audiovisual recordings of diverse cultural activities. CaCoCu was first presented in 2007 and has currently an important collection of documents. This paper describes its current state, the technological innovations that have recently been developed and the adaptation of the platform to adopt new vídeo standards, a better representation of knowledge, and the methodologies used for the dissemination of the channel through social networks.El Canal de Cultura Contemporánea de las Universidades Públicas de Andalucía (CaCoCu) consiste en una plataforma web con contenido cultural, fundamentalmente grabaciones audiovisuales íntegras de diversas actividades. CaCoCu se puso en explotación en 2007 y actualmente cuenta con un importante fondo documental. En este trabajo se describe el estado actual, las innovaciones tecnológicas que se han incorporado recientemente y su adaptación para nuevos estándares y una mejor representación del conocimiento, así como la metodología utilizada para la difusión del mismo mediante redes sociales

    Intelligent system based on genetic programming for atrial fibrillation classification

    Get PDF
    This article focuses on the development of intelligent classifiers in the area of biomedicine, focusing on the problem of diagnosing cardiac diseases based on the electrocardiogram (ECG), or more precisely, on the differentiation of the types of atrial fibrillations. First of all, we will study the ECG, and the treatment of the ECG in order to work with it with this specific pathology. In order to achieve this we will study different ways of elimination, in the best possible way, of any activity that is not caused by the auriculars. We will study and imitate the ECG treatment methodologies and the characteristics extracted from the electrocardiograms that were used by the researchers who obtained the best results in the Physionet Challenge, where the classification of ECG recordings according to the type of atrial fibrillation (AF) that they showed, was realized. We will extract a great amount of characteristics, partly those used by these researchers and additional characteristics that we consider to be important for the distinction previously mentioned. A new method based on evolutionary algorithms will be used to realize a selection of the most relevant characteristics and to obtain a classifier that will be capable of distinguishing the different types of this pathology

    Hexameric oligomerization of mitochondrial peroxiredoxin PrxIIF and formation of an ultrahigh affinity complex with its electron donor thioredoxin Trx-o

    Get PDF
    Mitochondria from plants, yeast, and animals each contain at least one peroxiredoxin (Prx) that is involved in peroxide detoxification and redox signalling. The supramolecular dynamics of atypical type II Prx targeted to the mitochondrion was addressed in pea. Microcalorimetric (ITC) titrations identified an extremely high-affinity binding between the mitochondrial PsPrxIIF and Trx-o with a KD of 126±14 pM. Binding was driven by a favourable enthalpy change (ΔH= –60.6 kcal mol−1) which was counterbalanced by unfavourable entropy changes (TΔS= –47.1 kcal mol−1). This is consistent with the occurrence of large conformational changes during binding which was abolished upon site-directed mutaganesis of the catalytic C59S and C84S. The redox-dependent interaction was confirmed by gel filtration of mitochondrial extracts and co-immunoprecipitation from extracts. The heterocomplex of PsPrxIIF and Trx-o reduced peroxide substrates more efficiently than free PsPrxIIF suggesting that Trx-o serves as an efficient and specific electron donor to PsPrxIIF in vivo. Other Trx-s tested by ITC analysis failed to interact with PsPrxIIF indicating a specific recognition of PsPrxIIF by Trx-o. PsPrxIIF exists primarily as a dimer or a hexamer depending on the redox state. In addition to the well-characterized oligomerization of classical 2-Cys Prx the results also show that atypical Prx undergo large structural reorganization with implications for protein–protein interaction and function

    A Mechanistic View of the Role of E3 in Sumoylation

    Get PDF
    Sumoylation, the covalent attachment of SUMO (Small Ubiquitin-Like Modifier) to proteins, differs from other Ubl (Ubiquitin-like) pathways. In sumoylation, E2 ligase Ubc9 can function without E3 enzymes, albeit with lower reaction efficiency. Here, we study the mechanism through which E3 ligase RanBP2 triggers target recognition and catalysis by E2 Ubc9. Two mechanisms were proposed for sumoylation. While in both the first step involves Ubc9 conjugation to SUMO, the subsequent sequence of events differs: in the first E2-SUMO forms a complex with the target and E3, followed by SUMO transfer to the target. In the second, Ubc9-SUMO binds to the target and facilitates SUMO transfer without E3. Using dynamic correlations obtained from explicit solvent molecular dynamic simulations we illustrate the key roles played by allostery in both mechanisms. Pre-existence of conformational states explains the experimental observations that sumoylation can occur without E3, even though at a reduced rate. Furthermore, we propose a mechanism for enhancement of sumoylation by E3. Analysis of the conformational ensembles of the complex of E2 conjugated to SUMO illustrates that the E2 enzyme is already largely pre-organized for target binding and catalysis; E3 binding shifts the equilibrium and enhances these pre-existing populations. We further observe that E3 binding regulates allosterically the key residues in E2, Ubc9 Asp100/Lys101 E2, for the target recognition

    Functional Reconstitution of a Tunable E3-Dependent Sumoylation Pathway in Escherichia coli

    Get PDF
    SUMO (small ubiquitin-related modifier) is a reversible post-translational protein modifier that alters the localization, activity, or stability of proteins to which it is attached. Many enzymes participate in regulated SUMO-conjugation and SUMO-deconjugation pathways. Hundreds of SUMO targets are currently known, with the majority being nuclear proteins. However, the dynamic and reversible nature of this modification and the large number of natively sumoylated proteins in eukaryotic proteomes makes molecular dissection of sumoylation in eukaryotic cells challenging. Here, we have reconstituted a complete mammalian SUMO-conjugation cascade in Escherichia coli cells that involves a functional SUMO E3 ligase, which effectively biases the sumoylation of both native and engineered substrate proteins. Our sumo-engineered E. coli cells have several advantages including efficient protein conjugation and physiologically relevant sumoylation patterns. Overall, this system provides a rapid and controllable platform for studying the enzymology of the entire sumoylation cascade directly in living cells

    The Polycomb Repressive Complex 2 Is a Potential Target of SUMO Modifications

    Get PDF
    The Polycomb Repressive Complex 2 (PRC2) functions as a transcriptional repressor through a mechanism that involves methylation of Histone H3 at lysine 27. The PRC2 complex activity is essential for cellular proliferation, development, and cell fate decisions. PRC2 target genes include important regulators of development and proliferation as well as tumor suppressor genes. Consistent with this, the activity of several Polycomb group (PcG) proteins is deregulated in human cancer suggesting an important role for PcGs in tumor development. Whereas the downstream functions of PcGs are well characterized, the mechanisms of their recruitment to target genes and the regulation of their activity are not fully understood.Here we show that the two PRC2 components SUZ12 and EZH2 are sumoylated in vitro and in vivo. Among several putative sumoylation sites we have mapped the major site of SUZ12 sumoylation. Furthermore, we show that SUZ12 interacts with the E2-conjugating enzyme UBC9 both in vitro and in vivo and that mutation of the SUZ12 sumoylation site does not abolish this binding. Finally, we provide evidence that the E3-ligase PIASXbeta interacts and enhances the sumoylation of SUZ12 in vivo suggesting that PIASXbeta could function as an E3-ligase for SUZ12.Taken together, our data identify sumoylation as a novel post-translational modification of components of the PRC2 complex, which could suggest a potential new mechanism to modulate PRC2 repressive activity. Further work aimed to identify the physiological conditions for these modifications will be required to understand the role of SUZ12 and EZH2 sumoylation in PcG-mediated epigenetic regulation of transcription
    corecore