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� This article focuses on the development of intelligent classifiers in the area of biomedicine,
focusing on the problem of diagnosing cardiac diseases based on the electrocardiogram (ECG),
or more precisely, on the differentiation of the types of atrial fibrillations. First of all, we will
study the ECG, and the treatment of the ECG in order to work with it with this specific
pathology. In order to achieve this we will study different ways of elimination, in the best
possible way, of any activity that is not caused by the auriculars. We will study and imitate
the ECG treatment methodologies and the characteristics extracted from the electrocardiograms
that were used by the researchers who obtained the best results in the Physionet Challenge, where
the classification of ECG recordings according to the type of atrial fibrillation (AF) that they
showed, was realized. We will extract a great amount of characteristics, partly those used by these
researchers and additional characteristics that we consider to be important for the distinction
previously mentioned. A new method based on evolutionary algorithms will be used to realize
a selection of the most relevant characteristics and to obtain a classifier that will be capable of
distinguishing the different types of this pathology.

Atrial fibrillation (AF) is the sustained arrhythmia that is most frequently
found in clinical practice, present in 0.4% of the total population.
Its frequency increases with age and with the presence of structural
cardiopathology (Chou and Chen 2008; Khasnis and Thakur 2008). Atrial
fibrillation is especially prevalent in the elderly, affecting 2–5% of the
population older than 60 years and 10% of people older than 80 years.
It is an important cause of ictus, which can be found in about 15% of the
patients that suffer from this phenomenon and in 2–8% of the patients
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with transitory ischemic attacks. The occurrence of ischemic cerebral
infarctations in patients with AF nonrheumatic oscillates between 2–5%
a year. The recurrences vary in different studies between 2–15% in the
first year and approximately 5% in the next year. The most important
indication of recurrences is presented by patients with AF and rheumatic
heart disease, but the occurrence has been decreasing during the last
couple of years. Therefore the most frequent source of cardioembolism
nowadays is nonrheumatic AF. Atrial fibrillation can be classified as initial
or chronic. The risks of sustained AF include stroke and myocardial
infarction, caused by the formation of blood clots within stagnant blood
volumes in the atrial (Logan and Healey 2004). Atrial fibrillation is the
result of an irregular and repetitive atrial depolarization. As a result of
this, the auricle does not contract in a coordinated way, producing so-
called “F-waves” or fibrillation waves, which would correspond to the
multiple atrial depolarizations (contractions), with disappearing P-waves
and disorganized waves appearing in its place. This can be seen in Figure 1.

The chronic forms of AF can be divided in three groups:

• Paroxysmal: The episodes generally end spontaneously and usually last
less than 48 hours.

• Permanent: Where the conversion of sinusal rhythm is impossible or
where there are quick relapses.

• Persistent: The AF persists but can be reverted to sinusal rhythm.

The decision to restore the sinusal rhythm or to control the ventricular
frequency is of critical importance. In the case of a first episode of AF,
restoring the sinusal rhythm should always be tried, but in the case of
persistent chronic AF it should be attempted to define who benefits from
the use of cardioversion and who should be treated with a control of the
ventricular frequency and tromboembolic profilaxis (Reddy 2008).

In order to develop a better understanding of AF, in recent years
intense investigation has been carried out (Chou and Chen 2008; Khasnis

FIGURE 1 ECG of a healthy patient (A), and one of a patient with atrial fibrillation, with multiple
fibrillate waves in the wave P (B).
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and Thakur 2008; Chiarugi et al. 2007). Time domain methods can be
used to characterize the signal in the surface ECG. Analysis can be done
through direct analysis of the original signal or through methods used to
obtain and analyze atrial activity with statistical tools or sequential analysis
methods. For example, Scherr et al. (2007) present a method based
on complex fractionated atrial electrograms (CFAEs) as ablative targets
for the treatment of AF. However, the process of CFAE identification is
highly dependent on the operator’s judgment. With the use of custom
software, CFAE complexes were identified in more than 80% of the left
atrial endocardial locations (Chiarugi et al. 2007). In the methodology
presented by Cantini et al. (2004) the average of RR (index of ventricular
activity) was related with the dominant atrial Frequency (DAF) (index of
atrial activity). A linear classifier was evaluated separating the RR/DAF
plane into the nonterminating AF (N-type), and AF that terminates
immediately, within 1 second after the end of the record (T-type). The best
score was 90% on testing the methodology. This article also proposed a
new methodology for the second event of the challenge from PhysioNet
and Computers in Cardiology: spontaneous termination of AF (Cantini
et al. 2004). For this second event, AF terminating in 1 minute (S-type)
versus AF terminating immediately (T-type), Cantini et al. (2004) used
a method based on the correlation of the QRST-complex in order to
preprocess the ECG, and after that, significative parameters were extracted
in the DAFs during the penultimate and last 2 seconds of the ECG
recording. The best score using this methodology was 80% on learning sets
and 90% on testing sets.

Guler and Ubeyli (2005) proposed ensemble neural networks to
guide model selection for classification of ECG beats. The ECG signals
were decomposed into time-frequency representations using discrete
wavelet transform and statistical features were calculated to depict their
distribution. In order to obtain good classification results four sets of
neural networks were trained. Networks in each group were trained
by the Levenberg–Marquardt backpropagation algorithm with different
targets. Three types of cardiac disease were classified: congestive heart
failure beat, ventricular tachyarrhythmia beat, AF beat, obtained from
the Physiobank database were classified with the accuracy of 96% by the
ensemble system. In Christov, Bortolan, and Daskalov (2001) a method for
automatic detection of atrial flutter and fibrillation by sequential analysis
of the atrial activity in a single ECG lead is presented. A previous method
for automatic detection of atrial flutter/fibrillation was based on the
assessment of atrial activity in TP segments. The proposed methodology
is based on the assessment of atrial activity in TP segments, connected
with “P wave absence” and “ventricular arrhythmia detection,” forming
a combined algorithm with three consecutive logic steps. The sequential
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analysis correctly detects “fine” fibrillation where atrial activity is hardly
visible. In Stridh and Sornmo (2002) a new methodology is presented
for the classification of AF based on a time-frequency distribution of
the QRST-cancelled signal. Information concerning temporal variations
in fibrillation frequency and waveform shape is extracted and analyzed.
Chiarugi et al. (2007) recently presented a noninvasive ECG tool for
predicting AF, where the atrial and ventricular activities were separated
using beat classification and class averaged beat subtraction, followed
by the evaluation of seven parameters representing atrial or ventricular
activity. As selected features for the classification of the ECG dominant
atrial frequency (DAF, index of atrial activity) and average HRmean (HR,
index of ventricular activity) was selected as optimal for classification. A
linear classifier was designed for classification type-N and type-T cardiac
disease, obtaining a performance of 90%. The same classifier led to correct
classification in 89% of the 46 cases for N/S-type discrimination.

The goal of this article is to present a new technique to detect various
types of terminating and nonterminating AF using an intelligent classifier
based on soft-computing paradigm (nonlinear classifier), using a powerful
tool such as genetic programming, capable of using in conjunction with
several features employed by different publications appearing in the
bibliography.

PROCESSING OF THE ECG’S

The data at our disposal consists of 60 second recordings captured
at a rate of 128 bits per second. However, these captured signals are not
clean. On the one hand, they possess noise within the captured signal
caused by the recording material or by other physical activities, such as,
for example, breathing, and on the other hand the activity of other parts
of the heart, such as, for example, the ventricles (since, obviously, for the
auricular fibrillation only the activity of the auricles is of interest). All these
noises will cloud the captured signal and will have to be eliminated in
order to be able to work with them, using several mechanisms that will
be explained later on, obtaining characteristics that are more solid. Since
the biggest part of the useful energy of the ECG is found below 40Hz, a
filtrate between [0.5–40Hz] has been obtained, to eliminate the noise that
is not cardiac activity. In order to be able to correctly analyze the activity
of the auricles, which is where the auricular filtration can be identified
clearly, the signal will have to be cleared of all activity that is of no interest.
To be able to eliminate the reflection of the ventricular activity in the QT-
section of the signal, we cannot just apply a mere filtrate of a frequency
range as in the case of noise caused by equipment, since the QRS-complex
covers the entire range of highly energetic frequencies. To obtain a clean
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signal of the auricular activity in the ECG, two different approaches will be
contemplated:

1. Cancelling the activity of the QRST complex, subtracting a morphologic
average of its activity from the signal, and applying it to every heartbeat.

2. Detecting the TQ section between every beat (which are clean zones of
the ventricular activity) and analyzing only what is produced in these
zones.

There is a great variety of algorithms to carry out the extraction of
the auricle activity from the electrocardiogram (Thakor, Webster, and
Tompkins 1984), such as, for example, Thakor’s method (structure of
recurrent adaptive filter), the method of adaptive filtering of the entire
band, methods based on neural nets, methods of space-time cancellation
(Stridh and Sornmo 2001), methods based on the application of wavelet
(Guler and Ubeyli 2005), or based on the use of the PCA-concept (Petrutiu
et al. 2006). A fundamental step that these approaches have in common is
the detection of the QRS-complex, that is to say, of every heartbeat. Since
there is not an especially outstanding method for the detection of QRS
in the ECG recordings, the application of a simple technique based on
the derivative of the signal will be enough. In summary the method is as
follows: the sum of the absolute values of the derivatives of both channels is
obtained, the sections with the largest incline (R-wave) are identified, and
the QRS-complex demarcated. As a result of this entire algorithm, we will
have detected the places in the electrocardiogram where there are QRS-
complexes, with which we will have the starting point for the application of
the different techniques of QRST-cancellation. In this article, two different
methods have been analyzed:

1. QRST methods of space-time cancellation (Stridh and Sornmo 2001),
which consists of the realization of the space-time alignment of an
average form of the heartbeat before eliminating that from every
specific heartbeat of the ECG, with which the resulting residues would
correspond with the signal of the “auricular fibrillation.” This method
is orientated on a continuous input signal, as would be the case with
an input signal in real-time, in which the average heartbeat adapts
to the variations that the heartbeats in the ECG undergo through
time. However, in the specific case that is of concern to us, there is a
recording of limited time (60 sec), for which a progressive adaptation of
the heartbeat does not seem recommendable. Furthermore, on having
the complete register and without the necessity of processing it little
by little, which would be the case in an analyzing system in real-time,
we can use all the available heartbeats to adjust the average heartbeat as
much as possible. Because of this, the technique previously mentioned
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will not be used to realize the QRST-cancellation in the development of
this project, although without doubt it is useful as an orientation.

2. QRST-cancellation through morphologic clustering (Cantini et al. 2004;
Chiarugi et al. 2007). With this technique as well, the subtraction
of every heartbeat from a template of the average heartbeat takes
place, but in this case the template used is specific to every heartbeat,
and it can be very different from the template used for the prior
heartbeat. This is caused by the fact that this average heartbeat is no
longer actualized little by little, with every new heartbeat analyzed in
comparison to the previous one, as could be done with the continuous
entry of the ECG signal, but rather that a clustering is realized,
in groups of different forms (morphology) of the heartbeats of the
recording.

DETECTION OF THE SEGMENTS OF AURICULAR ACTIVITY

Another focus that can be used to obtain the auricular activity that
is different from the subtraction of the ventricular activity proposed in
the two previous approaches, is the proposal by Lemay, Ihara, Vesin,
and Kappenberger (2004), which consists of the use of the segments
of the recording outside the QT-intervals. Although the proposal seems
straightforward, the difficulty lies in the fact that detecting this interval
QT is not a trivial task, but actually an open field of research. It is not
in vain that it was the proposal for the competition of PhysioNet for the
year 2006. Detecting the start of the Q-wave is not overly complicated
because the QRS-complex is easy to find and because of the great variety
of algorithms to detect it. Nevertheless, detecting the T-wave and its end
forms a complicated task, since in AF-recordings even by simply looking
at it, it is hard to demarcate the end of the T-wave, which means that
designing an algorithm that does that automatically in a great variety of
circumstances will continue to be complicated.

FEATURE EXTRACTIONS

The present idea in this work is to use the biggest quantity possible of
features that have been used satisfactorily by other authors. It is probable
that the individual who uses a characteristic does not contribute to a
correct classification; however, using diverse characteristic in a no-lineal
classifier, the interactions among different features can improve the
classification results considerably. The features analyzed were selected
by the article who obtained the best results in the completion, and
therefore the way they processed the ECG and the characteristics they
used should, in theory, be representative of the recordings. In total 55
different characteristics were used, from the following articles: Cantini
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et al. (2004), Lemay et al. (2004), Hayn et al. (2004), Raine and Langley
(2004), Mora and Castells (2004), Scherr et al. (2007), Petrutiu et al.
(2006), and Chiarugi et al. (2007).

A NEW INTELLIGENT CLASSIFIER BASED ON
GENETIC PROGRAMMING

In the different articles we have presented in the previous sections,
the authors did not use any algorithmic method in order to try to classify
the electrocardiograms. The authors applied simple methods to try to
establish the possible classification based on the classification capacity of
one single characteristic or pairs of characteristics (through a graphic
representation). Nevertheless, the fact that one single characteristic might
not be perfect individually to classify a group of patterns in the different
categories, does not mean that combined with another or others, it does
not obtain some high percentages in the classification. Due to the great
quantity of characteristics obtained from the ECG, a method to classify
the patterns was needed, alongside a way of selecting the subgroup of
characteristics optimal for classifying, since the great quantity of existing
characteristics would introduce noise as soon as the search for the
optimal classifier of the patterns of characteristics begins. In this article,
a new intelligent algorithm based on genetic programming (GP) for
simultaneously selecting the best features is proposed for the problem
of classification spontaneous termination of AF. In this algorithm GP is
used to search for a good classifier at the same time as the search for an
optimal subgroup of characteristics. The algorithm consists of a population
of classifiers, and each one of those is associated with a fitness value that
indicates how well it classifies. Each classifier is made up of the following:

• A binary vector of characteristics, which indicates with 1’s the
characteristics it uses.

• A multitree with as many trees as classes as has the collection of
data of the problem. Every tree i distinguishes between the class i
(giving a positive output) and the rest of the classes (negative output).
Furthermore, it is connected to values pj (frequency of failures) and
wj (frequency of successes). The trees are made up of function nodes
[+,−, ∗, /, trigonometric functions (sine, cosine, etc.), statistic functions
(minimums, maximums, average)], and terminal nodes {constant
number and features}. Their translation to a mathematical formula is
immediate.

The initial population is created by randomly making up trees, and
using the characteristics from a randomly chosen subgroup as possible
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characteristics, giving more probability to small subgroups. The algorithm
consists of a loop in which in each repetition a new population is formed
from the previous through the genetic operators. The classifiers that scores
the highest on fitness will have more possibilities to participate, with
which the population will tend to improve its quality with the successive
generations. The proposed algorithm has the following building blocks:
genetic operators and fitness function.

Genetic Operators

Genetic operators are applied to each individual within the population,
with an application probability pc for the crossover operators, and pm
for the mutation operators. Due to the problems of establishing these
probabilities a priori, the algorithm presented here implements a dynamic
adaptation mechanism of pc and pm (Srinivas and Patnaik 1994) which
chooses the values that are appropriate at all times, based on the state of
convergence of the population. Once the probabilities have been chosen,
the genetic operators described below are applied. The evolutionary
operators described in this section have been specifically designed for the
problem of optimizing the parameters of the genetic programming system.
These new operators not only apply random changes to the individuals
they affect in order to maintain the diversity in the population and to
provide mechanisms to escape from local minima (Gonzalez et al. 2002;
Castillo-Valdivieso et al. 2002), but they also try to avoid the application
of changes that could worsen the fitness of the solutions. In intelligent
systems it is very important to determine which are the main operators
(Rojas et al. 1999, 2000), being for our system the following:

• Reproduction operator: a classifier chosen proportionally to the fitness
passes on, intact, to the next generation.

• Mutation operator: a classifier is selected randomly and nodes of a tree
are changed, giving more probability to the worst trees.

• Crossover operator: homogeneous cross (classifiers with the same
characteristics) and heterogeneous cross (classifiers with a similar
subgroup). It realizes the exchange of subtrees and trees between the
classifiers. Figure 2 shows the behavior of this operator.

At the end, the algorithm produces the best classifier (the highest score
on fitness) that has been found during the execution of the algorithm.
In order to try to improve the percentages of classification obtained with
the algorithm, the ability to use Elitism was added and also an important
previous step to the assessment of characteristics. It was thought to be
useful to value the characteristics first, and use this assessment when a
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FIGURE 2 An example of a crossover operation in the proposed multitree classifier. (A) and (B)
are initially the classifiers. As it can be seen they exchange the low subtree at the selected nodes,
besides the complete trees which represent the bigger classes of the trees that exchange their
subtrees. In (C) and (D) the results of the crossover operator is presented.

subgroup would be assigned to the classifier. This is performed in the
following steps:

• A probability is given to each characteristic of being assigned to the
initial subgroup of the classifier proportional to its assessment.

• G-flip was used to assess the characteristics (Gilad-Bachrach, Navot, and
Tishby 2004). G-flip is a greedy search algorithm for maximizing an
evaluation function that takes into account the number of features
selected. The algorithm repeatedly iterates over the feature set and
updates the set of chosen features. In each iteration it decides to remove
or add the current feature to the selected set by evaluating the margin
term of the evaluation function with and without this feature. This
algorithm is similar to the zero-temperature Monte-Carlo (Metropolis)
method. It converges to a local maximum of the evaluation function, as
each step increases its value and the number of possible feature sets is
finite.
In order to obtain the best features for the classifier in the initial
population, an evaluation function that assigns a score to the different
features according to margin, is used. A margin is a geometric measure
for analyzing the robustness and evaluating the confidence of a classifier
with respect to its decision. The margin as a function of the selected set
of features is defined as

Mw
P = 1

2
(‖x − nearmiss(x)‖w − ‖x − nearhit(x)‖w) (1)

where P is a set of point and x be an instance. The vector of weight
w measures the relative importance of each feature in the input space.
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It is important to note that M �w
P (x) = ∣∣�∣∣Mw

P (x) for any crisp value �,
and therefore it is natural to establish the normalization constrainmax
w2

i = 1. To define the evaluation function of a specific value of the weight
vector w, the margin of the complete sample points is used. The margin
of each instance x is obtained with respect to the complete sample
excluding x . Therefore, the evaluation function to be optimized for a
specific weight vector w, given a training set S , is defined as

�(w) =
∑
x∈S

Mw
S\x(x) (2)

• The proposed methodology devalues bad characteristics in groups with
a large quantity of characteristics, thus accelerating their convergence to
good groups of characteristics and good classification results.

Fitness Function

The fitness function combines the double objective of achieving a good
classification and a small subgroup of characteristics:

Fitness = f · (
1 + �e− �

n
) + ��� (3)

In this equation, f is the sum of the cases of success in the classification
of the trees, � is the cardinality of the feature subset used, n is the total
number of features, and � is a parameter which determines the relative
importance that we want to assign for correct classification and the size
of the feature subset. The exponential factor decreases exponentially with
an increase in cardinality of the feature subset used and so is the fitness
function. Thus, if two classifiers make a correct decision on the same
number of training points, then the one using fewer features is assigned
a higher fitness. We decrease the penalty for using larger feature subsets
with generations to improve the classification accuracy. So initially we
use fewer features, but as learning progresses we give more importance
to better classification performance. In order to perform this behavior,
the parameter alpha is defined as follows:

� = C
(
1 − gen

TotalGen

)
(4)

where C is a constant, and TotalGen is the number of generations of the
genetic algorithm, and gen is the current generation. The function �
in (3) is a regularization function that measures the smoothness of the
intelligent multitree system in order to improve generalization capability
for the classifier design. The parameter � is a constant value that multiplies
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the effect of the regularization function in order to obtain the final fitness
function. The regularization method was presented originally by Tikhonov
(1963) and Wei, Zhang, Ng, and Wei (2007) for solving ill-posed problems.
If the Euclidean norm of the solution vector as � is selected, a zero-order
Tikhonov regularization is used. The main idea of regularization is to
stabilize and measure the smoothness of the obtained classifier by means of
some auxiliary nonnegative functional that gives prior information about
the classifier. By analyzing the behavior of the intelligent classifier during
the training phase, it is possible to observe that the nonlinear function
to be modelled by the GP can be abruptly modified and the output
for a certain point in the input space can be immediately adapted. This
behavior cannot be effectively detected and removed for the training phase
of the parameter of the intelligent classifier by only considering a point
at −→x i (i = 1, � � � ,n). Therefore, this is the reason to use the following
regularization function (Yun, Kyung, Sang, and Young 2001):

� = 1
n + 1

{ n∑
i=1

TOut

(−→x i

)} (∣∣T ′
Out

(−→x 1

)∣∣ + ∣∣T ′
Out

(−→x n

)∣∣ + T ′
N

)
(5)

where T ′
N is the curve length of the first derivative of the output function

of the multitree intelligent classifier, defined as T ′
Out

(−→x ) = dTOut
d−→x , and

evaluated between x1 and xn . As can be easily observed, the computational
time required for obtaining the function � in (5) is longer than for
obtaining the Tikhonov regularization; however, this function is very
effective obtaining smooth behavior on the classifier.

EXPERIMENTATION AND RESULTS OF CLASSIFICATION
WITH THE AF DATA

In the first place, the realization of the events of Challenge 2004
of Physionet (2004) was carried out with the characteristics obtained
from each author that obtain positive results, to test the validity of the
implementation of their methodology, and to compare these results with
the results obtained by the proposed methodology (see Table 1).

There are two different events:

Event A: Differentiate between Group N (nonterminating AF,
defined as AF that was not observed to have terminated for the duration
of the long-term recording, at least an hour following the segment) and
Group T (AF that terminates immediately, within 1 second after the end
of the record).

Event B: Differentiate between Group S (AF that terminates
1 minute after the end of the record) and Group T.
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TABLE 1 Comparison of the Proposed Methodology with the Winners
of Challenge 2004

Classification success (in %)

Event A Event B

Petrutiu et al. (2006) 97 100
Hayn et al. (2004) 93 80
Cantini et al. (2004) 90 90
Lemay et al. (2004) 90 60
Proposed methodology 100 95

Test set A contains 30 records, of which about one-half are from
group N, and of which the remainder are from group T. Test set B contains
20 records, 10 from each of groups S and T.

Apart from events A and B, other classifications have been realized (see
Table 2):

Event C: the separation of permanent AF (recording of type N)
from paroxysmal AF (recording of type S and type T). This turns out to
be interesting from a clinical point of view, since the risk of reoccurrence
in case of treating the permanent AF is very high, and it can be of interest
not to revert to sinoauricular rhythm but instead to treat the fibrillation
frequency.

Event G: the separation of three recording types simultaneously.

In the experiments that were carried out, all the extracted
characteristics were used. In events A and C, results of 100% for learning
set and 100% and 97% for test set were obtained respectively, comparable
to those of the authors, which shows that there is a quite clear separation
between them. In event B, a 95% result was achieved with the proposed
algorithm, but other author’s winners of this challenge obtain poor
results, which gives reason to think that there is not a good separation
at least with these characteristics or it is very important to select the

TABLE 2 Results of the Proposed Methodology for the Four Events

# Characteristic Learning set Test set

Number Mean Best (%) Mean (%) Best (%) Mean (%)

Event A 6 6.2 100 95 100 92
Event B 8 8.4 98 91 96 87
Event C 5 5.2 100 98�5 97 93
Event G 6 6.7 94 87 89 86



Intelligent System Based on Genetic Programming 907

TABLE 3 Results of a Neural Network Classifier for the Four Events, Using Three Feature
Selection Algorithms and Using all the Characteristics

Infogain Relief G-flip All characteristics

Best Mean Best Mean Best Mean Best Mean

Event Lrn Tst Lrn Tst #C Lrn Tst Lrn Tst #C Lrn Tst Lrn Tst #C Lrn Tst Lrn Tst #C

A 95 93�3 96�7 91�1 7 100 83�3 98�3 80 6 100 83�3 98�3 83�3 6 70 63�3 58�3 63�3 55
B 50 70 76�7 66�7 9 95 65 81�7 63�3 8 80 70 68�3 70 7 60 80 53�3 73�3 55
C 96�7 92 84�4 88 8 73�3 72 73�3 70 5 96�7 86 95�6 86 8 63�3 70 65�6 68�7 55
G 90 64 73�3 62�7 11 76�7 56 56�7 54 8 86�7 64 77�8 64 9 33�3 50 51�1 48 55

#C = number of characteristics used.

appropriated characteristics. In event G, the results are worse, achieving
94% for learning set and 89% for test set.

In addition we have wanted to carry out the same events with
another technique to compare the results of classification, particularly with
neural networks. Because in the case of learning with neural networks or
neurofuzzy systems, using all the characteristics could lead to unsatisfactory
results (Rojas et al. 1999, 2000), the most promising characteristics have
been selected for each event using different techniques, like for example
InfoGain, Relief and G-Flip (Gilad-Bachrach et al. 2004) (see Table 3).
As can be seen quite similar results have been obtained in the “easy”
events, being inferior in the “difficult ones,” which were obtained with
the previous classification algorithm. In respect to the comparison of the
classification results between the classification algorithm proposed and the
neural networks, it can be seen that using all the characteristics in the
neural networks, worse results in all events are achieved. This is caused
by the fact that a great number of characteristics create confusion in the
system, and therefore it is preferable as can be seen to use a selection
of algorithm characteristics to choose a good group of characteristics.
With the classification algorithm proposed in this article, it can be
observed that although using all the characteristics, equally good results
are achieved compared to the best results obtained with the neural
networks, converging the algorithm towards the use of good subgroups of
characteristics.

CONCLUSIONS

In this article, a new online feature selection algorithm using
genetic programming technique has been proposed as a classifier for
classification spontaneous termination of AF. In a combined way, our
genetic programming methodology automatically selects the required
features while design the multitree classifier.
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A different genetic operator has been designed for the multitree
classifier, and a for a better performance of the classifier, the initialization
process generates a solution using smaller feature subsets which has
been previously selected with a greedy search algorithm (G-Flips) for
maximizing the evaluation function. Therefore, the best features have
higher probability to be selected in the multitree classifier initially
constructed for the genetic programming algorithm. The effectiveness of
the proposed scheme is demonstrated in a real problem—the classification
of spontaneous termination of AF. At this point, it is important to note
that the use of different characteristics gives different classification result
as can be observed by the authors working in this challenge. The selection
of different features extracted from an electro-cardiogram has a strong
influence on the problem to be solved and in the behavior of the
classifier. Therefore, it is important to develop a general tool capable of
facing different cardiac illnesses, which can select the most appropriate
features in order to obtain an automatic classifier. As can be observed, the
proposed methodology has very good results compared to the winner of
the challenge from PhysioNet and Computers in Cardiology 2004, even if
this methodology has been developed in a general way to resolve different
classification problems.
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