89 research outputs found

    Random effects compound Poisson model to represent data with extra zeros

    Full text link
    This paper describes a compound Poisson-based random effects structure for modeling zero-inflated data. Data with large proportion of zeros are found in many fields of applied statistics, for example in ecology when trying to model and predict species counts (discrete data) or abundance distributions (continuous data). Standard methods for modeling such data include mixture and two-part conditional models. Conversely to these methods, the stochastic models proposed here behave coherently with regards to a change of scale, since they mimic the harvesting of a marked Poisson process in the modeling steps. Random effects are used to account for inhomogeneity. In this paper, model design and inference both rely on conditional thinking to understand the links between various layers of quantities : parameters, latent variables including random effects and zero-inflated observations. The potential of these parsimonious hierarchical models for zero-inflated data is exemplified using two marine macroinvertebrate abundance datasets from a large scale scientific bottom-trawl survey. The EM algorithm with a Monte Carlo step based on importance sampling is checked for this model structure on a simulated dataset : it proves to work well for parameter estimation but parameter values matter when re-assessing the actual coverage level of the confidence regions far from the asymptotic conditions.Comment: 4

    Optimisation thermo-économique et environnementale du cycle de vie d'un procédé de capture de dioxyde de carbone dans une centrale termique

    Get PDF
    L’optimisation multicritĂšres de la conception d’un procĂ©dĂ© permet d’en minimiser les Ă©missions polluantes et les coĂ»ts simultanĂ©ment. Cela permet de dĂ©terminer une sĂ©rie de configurations reprĂ©sentant le meilleur compromis possible entre ces deux objectifs, peu importe leur pondĂ©ration ultĂ©rieure. L’espace de dĂ©cision peut comprendre des variables de conception, comme le choix de la taille ou de la tempĂ©rature d’opĂ©ration des Ă©quipements, et des variables d’approvisionnement, comme le choix d’un fournisseur ayant de meilleures pratiques environÂŹnementales plutĂŽt qu’un autre. Pour obtenir le meilleur compromis possible, il faut d’abord dĂ©finir les fonctions-objectif correctement, ce qui pourrait nĂ©cessiter de les considĂ©rer dans une perspective du cycle de vie. La conception rĂ©ellement optimale d’un procĂ©dĂ© pourrait donc dĂ©pendre des impacts environnementaux du cycle de vie de ses intrants. L’hypothĂšse de recherche de cette thĂšse est qu’une dĂ©cision de conception de procĂ©dĂ© prise post-optimisation avec analyse du cycle de vie (ACV), comparativement Ă  la dĂ©cision prise sans ACV, apporte un bĂ©nĂ©fice Ă©conomique et environnemental Ă  long terme dont l’espĂ©rance est mesurable, du moins lorsque les contraintes environnementales ne sont pas dĂ©jĂ  internalisĂ©es dans le coĂ»t des intrants mais le seront plutĂŽt entre le moment de la conception et celui de la construction. L’objectif gĂ©nĂ©ral de recherche de cette thĂšse est de faire une validation de principe de l’intĂ©gration de donnĂ©es d’ACV dans un contexte d’optimisation de la conception d’un procĂ©dĂ© par simulation informatique, et d’en mesurer le bĂ©nĂ©fice pour un cas d’étude. Ce faisant, il est souhaitĂ© de dĂ©velopper de nouvelles façons d’utiliser l’ACV. Le cas d’étude est la conception prĂ©liminaire d’un procĂ©dĂ© de capture de CO2 en postcombustion dans une centrale Ă©lectrique Ă  cycle combinĂ© fonctionnant au gaz naturel. Le procĂ©dĂ© en boucle met la fumĂ©e refroidie en contact avec un absorbant chimique aqueux qui rĂ©agit avec le CO2, pour ensuite chauffer l’absorbant et libĂ©rer le CO2 concentrĂ© qui peut ensuite ĂȘtre injectĂ© dans un aquifĂšre salin en haute mer. Les impacts environnementaux de ce procĂ©dĂ© viennent principaleÂŹment du fait que la dĂ©sorption consomme de la vapeur qui aurait autrement pu produire davantage d’électricitĂ©. Des impacts supplĂ©mentaires sont associĂ©s au remplacement pĂ©riodique de l’absorbant, aux fuites de sĂ©questration, ainsi qu’aux infrastructures, Ă  la machinerie et Ă  l’énergie requises pour compresser, assĂ©cher, re-compresser, transporter et injecter le CO2. La modĂ©lisation informatique du cas d’étude comprend un modĂšle de schĂ©ma d’écoulement du procĂ©dĂ© incluant la cinĂ©tique de la capture, un modĂšle sĂ©parĂ© d’intĂ©gration thermique du procĂ©dĂ©, un algorithme gĂ©nĂ©tique d’optimisation multicritĂšres, le calcul des fonctions-objectif, et une plate-forme sous-jacente fournie par le Laboratoire d’énergĂ©tique industrielle de l’École polytechnique fĂ©dĂ©rale de Lausanne. L’espace de dĂ©cision combine des variables de dĂ©cision continues (par exemple, la pression d’une colonne) et discrĂštes (par exemple, le branchement d’un Ă©coulement). Une partie de l’originalitĂ© de la dĂ©marche est d’explorer simultanĂ©ment de nombreuses configu-rations d’écoulement et d’échangeurs de chaleur grĂące Ă  la plate-forme utilisĂ©e. Un objectif secondaire de recherche est donc de contribuer Ă  l’état de l’art de la conception des procĂ©dĂ©s de capture de CO2 en milieu aqueux, particuliĂšrement au niveau de l’intĂ©gration thermique. La principale originalitĂ© de la dĂ©marche est toutefois de comparer la prise de dĂ©cisions en considĂ©rant toujours plusieurs façons de mesurer les impacts environnementaux avec ou sans l’ACV. Cela permet de mesurer la contribution de l’ACV elle-mĂȘme pour la prise de dĂ©cisions, mais aussi l’importance des impacts environnementaux spĂ©cifiques Ă  chaque intrant, qu’il s’agisse de gaz naturel, d’acier, d’absorbant, ou d’un service de transport et de sĂ©questration du CO2, ou encore spĂ©cifiques Ă  chaque substance Ă©mise, qu’il s’agisse du CO2 lui-mĂȘme, des autres gaz Ă  effet de serre ou d’autres polluants. Les principaux rĂ©sultats de ce travail sont que le coĂ»t de la capture du CO2, par unitĂ© de potentiel de rĂ©chauffement global Ă©vitĂ©, augmente d’environ 3 % lorsqu’on considĂšre les impacts dans une perspective du cycle de vie, et que c’est le CO2 lui-mĂȘme, Ă©mis par les producteurs de gaz naturel et les transporteurs de CO2, qui contribue principalement Ă  cette diffĂ©rence. Ainsi, l’ACV peut mener Ă  de meilleures dĂ©cisions dans plusieurs circonstances, en favorisant l’efficacitĂ© Ă©nergĂ©tique et la substitution de combustibles biogĂ©niques comme le gaz naturel synthĂ©tique du bois gazĂ©ifiĂ©, et en dĂ©cidant d’encourager les fournisseurs Ă  rĂ©duire leurs propres Ă©missions. Dans le cas prĂ©cis oĂč une taxe anticipĂ©e sur le CO2 est tout juste suffisante pour donner l’impression que la capture est rentable, alors qu’une Ă©valuation dĂ©taillĂ©e de la mĂȘme taxe chez les fournisseurs indique qu’elle n’est pas rentable, le recours Ă  l’ACV mĂšne alors Ă  la dĂ©cision de payer la taxe plutĂŽt que de capturer le CO2, pour un gain d’environ 0,64 /MWhattribuableaˋl’ACV,validantainsil’hypotheˋsederecherche.Lesconclusionstechniques,eˊconomiquesetenvironnementalesdeˊcoulantdecesreˊsultatssontdeˊtailleˊesdanstroisarticlessoumisaveccettetheˋse,respectivement.Quelquesobservationsoriginalessurleplantechniquereˊpondentaˋl’objectifsecondairederecherche.Enparticulier,ilpourraite^treavantageuxd’utiliserlachaleurdel’absorbantdeCO2appauvripourgeˊneˊrerdelavapeur,cequipermettraitdesimplifierledeˊsorbeur.Aussi,lesreˊsultatsdonnentdesvaleursoptimalesrelativementeˊleveˊespourlalargeurdel’absorbeur,lachargenettedel’absorbantetletauxdecapture.Celaporteaˋcroirequelesauteurspreˊceˊdentsn’ontpaspuarriveraˋunoptimumglobalparcequ’ilsontutiliseˊunnombreinsuffisantdevariablesdedeˊcisionetparcequeleurfonction−objectif,minimiserlaconsommationdevapeur,estinadeˊquate.Cependant,cesideˊesrestentaˋvalideravecunmodeˋleplusdeˊtailleˊ.Leprincipalapportauxconnaissancesdecettetheˋseconsisteenunenouvellemeˊthodologied’optimisationducycledeviequicombinel’ACVetl’analysedescou^tsducycledevie.Ellepermetd’optimiserlaconceptiond’unproceˊdeˊtoutenconsideˊrantquelesfournisseursvontoptimisereux−me^mesleurseˊmissions,souslapressionsoitdenouvellestaxes,soitd’unepolitiqued’approvisionnementaˋdeˊterminerplustard.Sonoriginaliteˊreposesurunepondeˊrationdeseˊmissionsdesfournisseursselonleurcou^td’eˊvitementcorrespondantaˋunmeˊlangeoptimaldemesuresdepreˊventionetdecompensation.Cettemeˊthodologieestlaseulepermettantuneconceptionglobalementoptimale,selonladeˊmonstrationfourniedanscettetheˋse,quisuggeˋreeˊgalementquelavaliditeˊdel’approches’eˊtendaˋtouteslesdeˊcisionsdeconceptionengeˊneˊral.L’analysedescou^tsd’eˊvitementde3850processuseˊleˊmentairesd’unebasededonneˊesd’ACVdeˊmontrequepourunetreˋslargemajoriteˊdeprocessus,qualifiablesd’eˊnergivores,lescou^tsd’eˊvitementdessubstancesautresqueleCO2sontneˊgligeablesparrapportauxautrescou^ts.Commelescou^tsnon−environnementauxrepreˊsententindirectementdesopportuniteˊsd’eˊvitementd’impactsailleurs,ilestsouventpreˊfeˊrable,me^med’unpointdevuestrictementenvironneÂŹmental,d’utiliseruneconceptiondefaiblecou^tmaisenincitant(moneˊtairement)lesfournisseursaˋpreˊvenirouaˋcompenserleurseˊmissions,pluto^tqued’utiliserlaconceptiondefaiblesimpactsselonl’ACVsanseˊgardauxcou^ts.Enfait,lorsquelatotaliteˊdesintrantsd’unproceˊdeˊsonteˊnergivores,laconceptionoptimaleestsimplementcellequiminimiselescou^tsducycledevie,incluantlesfuturestaxesindirectessurleCO2quel’ACVpermetd’estimerpourchaqueintrant.−−−−−−−−−−Multi−objectiveprocessdesignoptimizationmakesitpossibletosimultaneouslyminimizethepollutingemissionsandthecostsofaprocess,determiningasetofconfigurationsthatrepresentsthebestpossiblecompromisebetweenthesetwoobjectives,regardlessoftheirfutureweighting.Thedecisionspacemayincludedesignvariablessuchasequipmentsizeoroperatingtemperatureandprocurementvariablessuchasthechoiceofasupplierwithbetterenvironmentalpracticesthananother.Inordertoobtainthebestpossiblecompromise,theobjectivefunctionsmustbecorrectlydefinedinthefirstplace–aprocessthatmayrequireconsideringtheminalifecycleperspective.Thetrulyoptimaldesignofaprocesscouldthusdependonthelifecycleenvironmentalimpactsofallitsinputs.Theresearchhypothesisoutlinedinthisdissertationadvancesthataprocessdesigndecisiontakenpost−optimizationwithlifecycleassessment(LCA),ascomparedtothedecisiontakenwithoutLCA,bringsalong−termeconomicandenvironmentalbenefitwithameasurableexpectation,atleastwhenenvironmentalconstraintshavenotbeeninternalizedininputpricesyet,butwillbeinternalizedbetweenthedesignphaseandtheconstructionphase.ThegeneralresearchobjectiveisthereforetosetoutaproofofconceptofLCAdataintegrationintoaprocessdesignoptimizationcontextthroughcomputersimulationandthentomeasurethebenefitsforacasestudy,withaviewtodevelopnewwaysofusingLCA.Thecasestudyinvolvesthepreliminarydesignofapost−combustionCO2captureprocessinanaturalgascombinedcyclepowerplant.Theclosed−loopprocessputscoldfluegasincontactwithanaqueouschemicalabsorbentthatreactswiththeCO2,afterwhichtheabsorbentisheatedtoreleaseconcentratedCO2thatcanlaterbeinjectedintoasalineaquiferatsea.Theenvironmentalimpactsoftheprocesssteminmajorityfromthestripperconsumptionofsteamthatwouldotherwiseproducemoreelectricity.Additionalimpactsaregeneratedbymake−upabsorbentproductionandbysequestrationleaks,aswellasbytheinfrastructure,themachineryandtheenergyrequiredtocompress,dryout,recompress,transportandinjecttheCO2.Computermodelingofthecasestudyincludesaprocessflow−sheetingmodelthataccountsforCO2capturekinetics,aseparatethermalintegrationmodel,ageneticmulti−objectiveoptimiÂŹzationalgorithm,thecalculationofobjectivefunctionsaswellasanunderlyingplatformprovidedbytheIndustrialEnergySystemsLaboratoryofEˊcolepolytechniquefeˊdeˊraledeLausanne.Thedecisionspacecombinescontinuous(e.g.acolumnoperatingpressure)anddiscretevariables(e.g.thebranchingofaflow).Partoftheoriginalityoftheapproachisthatitconcurrentlyexploresseveralabsorbentflowandheatexchangerconfigurationsusingtheuniquecapabilitiesoftheplatform.AsecondaryresearchobjectiveisthereforetocontributetothestateoftheartinCO2captureprocessdesign,especiallyasitpertainstothermalintegrationwiththepowerplantsteamcycle.However,theoriginalityoftheapproachismainlydrivenbythefactthatitcomparesdecisionsmadebyconsideringseveralwaysofmeasuringtheenvironmentalimpacts,withandwithoutLCA,thusmakingitpossibletoassessthecontributionofLCAitselffordecision−makingaswellasthesignificanceoftheenvironmentalimpactsspecifictoeachinput(e.g.naturalgas,steel,absorbent,orCO2transportandsequestrationservices),orspecifictoeachsubstanceemitted(e.g.CO2,othergreenhousegases,orotherpollutants).ThemainresultsoftheresearcharethattheCO2capturecosts,perunitofavoidedglobalwarmingpotential,increasebyapproximately3/MWh attribuable Ă  l’ACV, validant ainsi l’hypothĂšse de recherche. Les conclusions techniques, Ă©conomiques et environnementales dĂ©coulant de ces rĂ©sultats sont dĂ©taillĂ©es dans trois articles soumis avec cette thĂšse, respectivement. Quelques observations originales sur le plan technique rĂ©pondent Ă  l’objectif secondaire de recherche. En particulier, il pourrait ĂȘtre avantageux d’utiliser la chaleur de l’absorbant de CO2 appauvri pour gĂ©nĂ©rer de la vapeur, ce qui permettrait de simplifier le dĂ©sorbeur. Aussi, les rĂ©sultats donnent des valeurs optimales relativement Ă©levĂ©es pour la largeur de l’absorbeur, la charge nette de l’absorbant et le taux de capture. Cela porte Ă  croire que les auteurs prĂ©cĂ©dents n’ont pas pu arriver Ă  un optimum global parce qu’ils ont utilisĂ© un nombre insuffisant de variables de dĂ©cision et parce que leur fonction-objectif, minimiser la consommation de vapeur, est inadĂ©quate. Cependant, ces idĂ©es restent Ă  valider avec un modĂšle plus dĂ©taillĂ©. Le principal apport aux connaissances de cette thĂšse consiste en une nouvelle mĂ©thodologie d’optimisation du cycle de vie qui combine l’ACV et l’analyse des coĂ»ts du cycle de vie. Elle permet d’optimiser la conception d’un procĂ©dĂ© tout en considĂ©rant que les fournisseurs vont optimiser eux-mĂȘmes leurs Ă©missions, sous la pression soit de nouvelles taxes, soit d’une politique d’approvisionnement Ă  dĂ©terminer plus tard. Son originalitĂ© repose sur une pondĂ©ration des Ă©missions des fournisseurs selon leur coĂ»t d’évitement correspondant Ă  un mĂ©lange optimal de mesures de prĂ©vention et de compensation. Cette mĂ©thodologie est la seule permettant une conception globalement optimale, selon la dĂ©monstration fournie dans cette thĂšse, qui suggĂšre Ă©galement que la validitĂ© de l’approche s’étend Ă  toutes les dĂ©cisions de conception en gĂ©nĂ©ral. L’analyse des coĂ»ts d’évitement de 3850 processus Ă©lĂ©mentaires d’une base de donnĂ©es d’ACV dĂ©montre que pour une trĂšs large majoritĂ© de processus, qualifiables d’énergivores, les coĂ»ts d’évitement des substances autres que le CO2 sont nĂ©gligeables par rapport aux autres coĂ»ts. Comme les coĂ»ts non-environnementaux reprĂ©sentent indirectement des opportunitĂ©s d’évitement d’impacts ailleurs, il est souvent prĂ©fĂ©rable, mĂȘme d’un point de vue strictement environneÂŹmental, d’utiliser une conception de faible coĂ»t mais en incitant (monĂ©tairement) les fournisseurs Ă  prĂ©venir ou Ă  compenser leurs Ă©missions, plutĂŽt que d’utiliser la conception de faibles impacts selon l’ACV sans Ă©gard aux coĂ»ts. En fait, lorsque la totalitĂ© des intrants d’un procĂ©dĂ© sont Ă©nergivores, la conception optimale est simplement celle qui minimise les coĂ»ts du cycle de vie, incluant les futures taxes indirectes sur le CO2 que l’ACV permet d’estimer pour chaque intrant. ---------- Multi-objective process design optimization makes it possible to simultaneously minimize the polluting emissions and the costs of a process, determining a set of configurations that represents the best possible compromise between these two objectives, regardless of their future weighting. The decision space may include design variables such as equipment size or operating temperature and procurement variables such as the choice of a supplier with better environmental practices than another. In order to obtain the best possible compromise, the objective functions must be correctly defined in the first place – a process that may require considering them in a life cycle perspective. The truly optimal design of a process could thus depend on the life cycle environmental impacts of all its inputs. The research hypothesis outlined in this dissertation advances that a process design decision taken post-optimization with life cycle assessment (LCA), as compared to the decision taken without LCA, brings a long-term economic and environmental benefit with a measurable expectation, at least when environmental constraints have not been internalized in input prices yet, but will be internalized between the design phase and the construction phase. The general research objective is therefore to set out a proof of concept of LCA data integration into a process design optimization context through computer simulation and then to measure the benefits for a case study, with a view to develop new ways of using LCA. The case study involves the preliminary design of a post-combustion CO2 capture process in a natural gas combined cycle power plant. The closed-loop process puts cold flue gas in contact with an aqueous chemical absorbent that reacts with the CO2, after which the absorbent is heated to release concentrated CO2 that can later be injected into a saline aquifer at sea. The environmental impacts of the process stem in majority from the stripper consumption of steam that would otherwise produce more electricity. Additional impacts are generated by make-up absorbent production and by sequestration leaks, as well as by the infrastructure, the machinery and the energy required to compress, dry out, recompress, transport and inject the CO2. Computer modeling of the case study includes a process flow-sheeting model that accounts for CO2 capture kinetics, a separate thermal integration model, a genetic multi-objective optimiÂŹzation algorithm, the calculation of objective functions as well as an underlying platform provided by the Industrial Energy Systems Laboratory of École polytechnique fĂ©dĂ©rale de Lausanne. The decision space combines continuous (e.g. a column operating pressure) and discrete variables (e.g. the branching of a flow). Part of the originality of the approach is that it concurrently explores several absorbent flow and heat exchanger configurations using the unique capabilities of the platform. A secondary research objective is therefore to contribute to the state of the art in CO2 capture process design, especially as it pertains to thermal integration with the power plant steam cycle. However, the originality of the approach is mainly driven by the fact that it compares decisions made by considering several ways of measuring the environmental impacts, with and without LCA, thus making it possible to assess the contribution of LCA itself for decision-making as well as the significance of the environmental impacts specific to each input (e.g. natural gas, steel, absorbent, or CO2 transport and sequestration services), or specific to each substance emitted (e.g. CO2, other greenhouse gases, or other pollutants). The main results of the research are that the CO2 capture costs, per unit of avoided global warming potential, increase by approximately 3% when considering impacts in a life cycle perspective and that it is the CO2 released by natural gas producers and CO2 transporters that largely contribute to the increase. LCA can therefore lead to better decision-making in several circumstances by fostering energy efficiency and the substitution of biogenic fuels such as synthetic natural gas from wood gasification as well as by choosing to incite suppliers to reduce their emissions. In the specific case in which an anticipated CO2 tax is just enough to give the impression that capture is profitable while a detailed assessment of the same tax as paid by suppliers indicates that it is not, LCA will support the decision to pay the tax rather than capture the CO2, for a net gain of some 0.64/MWh attributable to the LCA, therefore validating the research hypothesis. The technical, economic and environmental conclusions drawn from these results are detailed in the three articles submitted with this dissertation, respectively. Certain novel technical observations meet the secondary research objective. More specifically, it may be advantageous to use the lean CO2 absorbent heat to generate steam, simplifying stripper design. Also, results include relatively high optimal values for the absorber width, the net absorbent loading and the overall capture rate, leading one to believe that other authors have not yet been able to reach a global optimum because they used too few decision variables and they relied on the inadequate objective function of minimizing steam consumption. However, these ideas must still be validated using a more detailed model including the individual cost of the main heat exchangers. This dissertation’s main contribution to scientific knowledge consists in a new life cycle optimization methodology that combines life cycle assessment and life cycle costing, making it possible to optimize a process design while considering that suppliers will also optimize their emissions themselves because of future taxes or voluntarily through a procurement policy to be determined at a later date. Its originality is based on a method for weighting supply-chain emissions according to the avoidance cost of an optimal combination of prevention and compensation measures. According to the theoretical demonstration set out in the dissertation, this methodology is the only approach that makes it possible to determine a globally optimal design, and it is suggested that its validity extends to all design decision-making in general. The avoidance costs of a batch of 3 850 elementary processes from an LCA database show that, for the vast majority of these processes defined as energy-intensive, the avoidance costs of non-CO2 substances are negligible as compared to all other costs. Since non-environmental costs indirectly represent avoidance opportunities elsewhere, it is often preferable – even from a strictly environmental perspective – to use a low-cost design and incite suppliers (using money) to prevent or compensate their emissions rather than rely on a design with low-impacts according to LCA but without considering costs. In fact, when all inputs of a process are energy-intensive, the optimal process design is simply the one that minimizes all life cycle costs, including indirect future CO2 taxes that LCA can estimate for each input

    The role of gene expression in ecological speciation

    Get PDF
    Ecological speciation is the process by which barriers to gene flow between populations evolve due to adaptive divergence via natural selection. A relatively unexplored area in ecological speciation is the role of gene expression. Gene expression may be associated with ecologically important phenotypes not evident from morphology and play a role during colonization of new environments. Here we review two potential roles of gene expression in ecological speciation: (1) its indirect role in facilitating population persistence and (2) its direct role in contributing to genetically based reproductive isolation. We find indirect evidence that gene expression facilitates population persistence, but direct tests are lacking. We also find clear examples of gene expression having effects on phenotypic traits and adaptive genetic divergence, but links to the evolution of reproductive isolation itself remain indirect. Gene expression during adaptive divergence seems to often involve complex genetic architectures controlled by gene networks, regulatory regions, and “eQTL hotspots.” Nonetheless, we review how approaches for isolating the functional mutations contributing to adaptive divergence are proving to be successful. The study of gene expression has promise for increasing our understanding ecological speciation, particularly when integrative approaches are applied

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Design status of ASPIICS, an externally occulted coronagraph for PROBA-3

    Get PDF
    The "sonic region" of the Sun corona remains extremely difficult to observe with spatial resolution and sensitivity sufficient to understand the fine scale phenomena that govern the quiescent solar corona, as well as phenomena that lead to coronal mass ejections (CMEs), which influence space weather. Improvement on this front requires eclipse-like conditions over long observation times. The space-borne coronagraphs flown so far provided a continuous coverage of the external parts of the corona but their over-occulting system did not permit to analyse the part of the white-light corona where the main coronal mass is concentrated. The proposed PROBA-3 Coronagraph System, also known as ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun), with its novel design, will be the first space coronagraph to cover the range of radial distances between ~1.08 and 3 solar radii where the magnetic field plays a crucial role in the coronal dynamics, thus providing continuous observational conditions very close to those during a total solar eclipse. PROBA-3 is first a mission devoted to the in-orbit demonstration of precise formation flying techniques and technologies for future European missions, which will fly ASPIICS as primary payload. The instrument is distributed over two satellites flying in formation (approx. 150m apart) to form a giant coronagraph capable of producing a nearly perfect eclipse allowing observing the sun corona closer to the rim than ever before. The coronagraph instrument is developed by a large European consortium including about 20 partners from 7 countries under the auspices of the European Space Agency. This paper is reviewing the recent improvements and design updates of the ASPIICS instrument as it is stepping into the detailed design phase

    Multi-objective Design Optimization of a NGCC Power Plant with CO2 Capture Using Life Cycle Assessment Results

    No full text
    Multi-objective optimisation methodology is ideally suited to incorporate environmental objectives in the optimal design of energy conversion systems. It is also desirable to optimise life-cycle emissions rather than local emissions only. However, using LCA results directly as an objective function gives sub-optimal designs, since inputs whose life-cycle emissions are easy to reduce are underused and vice-versa. We develop a method integrating LCA results in an optimisation framework, so that the optimal designs found are logically consistent with the aim of minimising global emissions. We then apply the method to the optimisation of a NGCC power plant with CO2 capture, optimising column dimensions, solvent flow and heat exchange configuration with respect to two functions: cost and life cycle global warming potential. This method of using LCA results has an actual benefit since the cost of reducing local emissions cannot be lower than for global emissions
    • 

    corecore