23 research outputs found

    The disruption of proteostasis in neurodegenerative diseases

    Get PDF
    Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Strategies for the Treatment of Restless Legs Syndrome

    No full text

    Algorithms for survival: a comparative perspective on emotions

    Get PDF
    The nature and neural implementation of emotions is the subject of vigorous debate. Here, we use Bayesian decision theory to address key complexities in this field and conceptualize emotions in terms of their relationship to survival-relevant behavioural choices. Decision theory indicates which behaviours are optimal in a given situation; however, the calculations required are radically intractable. We therefore conjecture that the brain uses a range of pre-programmed algorithms that provide approximate solutions. These solutions seem to produce specific behavioural manifestations of emotions and can also be associated with core affective dimensions. We identify principles according to which these algorithms are implemented in the brain and illustrate our approach by considering decision making in the face of proximal threat

    Behavioral Model Systems

    No full text

    Serotonin: from top to bottom

    No full text
    corecore