54 research outputs found

    Transcriptional Rewiring, Adaptation, and the Role of Gene Duplication in the Metabolism of Ethanol of Saccharomyces cerevisiae

    Get PDF
    Ethanol is the main by-product of yeast sugar fermentation that affects microbial growth parameters, being considered a dual molecule, a nutrient and a stressor. Previous works demonstrated that the budding yeast arose after an ancient hybridization process resulted in a tier of duplicated genes within its genome, many of them with implications in this ethanol 'produce-accumulate-consume' strategy. The evolutionary link between ethanol production, consumption, and tolerance versus ploidy and stability of the hybrids is an ongoing debatable issue. The implication of ancestral duplicates in this metabolic rewiring, and how these duplicates differ transcriptionally, remains unsolved. Here, we study the transcriptomic adaptive signatures to ethanol as a nonfermentative carbon source to sustain clonal yeast growth by experimental evolution, emphasizing the role of duplicated genes in the adaptive process. As expected, ethanol was able to sustain growth but at a lower rate than glucose. Our results demonstrate that in asexual populations a complete transcriptomic rewiring was produced, strikingly by downregulation of duplicated genes, mainly whole-genome duplicates, whereas small-scale duplicates exhibited significant transcriptional divergence between copies. Overall, this study contributes to the understanding of evolution after gene duplication, linking transcriptional divergence with duplicates' fate in a multigene trait as ethanol tolerance

    Advanced impulsive differential equations with piecewise constant arguments

    Get PDF
    We prove the existence and uniqueness of the solutions of a class of first order nonhomogeneous advanced impulsive differential equations with piecewise constant arguments. We also study the conditions of periodicity, oscillation, nonoscillation and global asymptotic stability for some special cases. First published online: 09 Jun 201

    Di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH) alters transcriptional profiles, lipid metabolism and behavior in zebrafish larvae

    No full text
    Plasticizers are commonly used in different consumer goods and personal care products to provide flexibility, durability and elasticity to polymers. Due to their reported toxicity, the use of several plasticizers, including phthalates has been regulated and/or banned from the market. Di(isononyl) cyclohexane-1,2- dicarboxylate (DINCH) is an alternative plasticizer that was introduced to replace toxic plasticizers. Increasing global demand and lack of toxicity data and safety assessment of DINCH have raised the concern to human and animal health. Hence, in the present study, we investigated the adverse effects of DINCH (at concentrations ranging from 0.01 to 10 mu M) in early developmental stages of zebrafish using different endpoints such as hatching rate, developmental abnormalities, lipid content, behavior analysis and gene expression. We found that DINCH caused hatching delay in a dose-dependent manner and altered the expression of genes involved in stress response. Lipid staining using Oil Red O stain showed a slight lipid accumulation around the yolk, brain, eye and neck with increasing concentration. Genes associated with lipid transport such as fatty acid synthesis, beta-oxidation, elongation, lipid transport were significantly altered by DINCH. Genes involved in cholesterol biosynthesis and homeostasis were also affected by DINCH indicating possible developmental neurotoxicity. Behavioral analysis of larvae demonstrated a distinct locomotor activity upon exposure to DINCH. The present data shows that DINCH could induce physiological and metabolic toxicity to aquatic organisms. Hence, further analyses and environmental monitoring of DINCH should be conducted to determine its safety and toxicity levels

    ADVANCED IMPULSIVE DIFFERENTIAL EQUATIONS WITH PIECEWISE CONSTANT ARGUMENTS

    No full text
    We prove the existence and uniqueness of the solutions of a class of first order nonhomogeneous advanced impulsive differential equations with piecewise constant arguments. We also study the conditions of periodicity, oscillation, nonoscillation and global asymptotic stability for some special cases. First published online: 09 Jun 201
    corecore